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Exponential random graph models (ERGMs) are a class of statistical models for complex
network structures [3]. ERGMs have been used to study social networks, communication net-
works and organizational structures, and have been applied widely across the social sciences,
from studies of animal social behavior to criminal networks to archaeology, as well as epidemi-
ology and public health. Despite their broad appeal, computational problems have limited the
applications of ERGMs to the analysis of relatively small social networks.

Under a homogeneity assumption whereby all structurally identical subgraphs are equally
probable, an ERGM is a probability distribution with the general form Pr(X = x) =
1
κ exp (

∑
A θAzA(x)), where X = [Xij ] is a 0-1 matrix of random tie variables, x is a real-

ization of X, A is a configuration (a small set of nodes and a subset of ties between them),
zA(x) is the network statistic for configuration A, θA is a model parameter corresponding to
configuration A, and κ is a normalizing constant to ensure a proper distribution.

Markov chain Monte Carlo techniques for estimating ERGM parameters [5] are based on the
generation of a distribution of random graphs by a stochastic simulation process. This process,
which requires both a number of iterations to “burn in” the Markov chain and a large number
of iterations to generate samples that are not too auto-correlated, is computationally intensive,
and scales (at least) quadratically in the number of nodes in the network. This limits the size
of networks to which an ERGM can be fitted in practical time. Furthermore, this process is
inherently sequential, which limits the ability to take advantage of parallel computing.

In this work, we fit ERGMs to networks far larger than previously possible, by taking
multiple snowball samples. Snowball sampling [1] is a technique to generate a sample of nodes
in a network using the network structure itself. We then estimate ERGM parameters for each in
parallel using conditional estimation, and combine the results with meta-analysis. The first work
to take a similar approach was [9], in which 400 snowball samples are estimated in parallel and
the results combined with meta-analysis [7]. However, as shown by [6], an ERGM specification
for a subgraph sample cannot be projected to give predictions on the graph from which it was
drawn, so this combined estimate might be quite incorrect. One way to handle this problem is
described in [2], which requires knowing the size of the full network, and that estimation over
the entire set of random tie variables is feasible. Another way is to use conditional estimation
based on the snowball sampling structure [4], which is the technique we use.

We show that boot-strapped approaches to estimating confidence intervals in the meta-
analysis improve estimation, and investigate the validity of statistical inference by repeating
the estimation many times on networks simulated from known models (with 5000 and 10 000
nodes), checking the estimates against the known parameters to check bias. These networks
have a parsimonious model with only four parameters, reflecting processes related to density,
degree, network closure and connectivity. We also investigate Type I and Type II statistical
errors, finding that estimates can be obtained without major bias and with reasonable Type I
and Type II errors.
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Figure 1: The network science co-authorship network.

As well as the simulated networks, we apply our method to some empirical collaboration
networks, of sizes ranging from 1589 to over 40 000 nodes. The network science collaboration
network that we analyse to illustrate our approach is depicted in Fig 1. For this network, the
estimation took approximately 9.5 days to converge using currently available software [8], and
only 1.5 hours using 20 parallel tasks (total CPU time 3.6 hours) with snowball sampling and
conditional estimation. We illustrate the general value of our approach also in the analysis of
larger interpersonal and interorganizational networks.
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