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Axelrod’s model of cultural dissemination, despite its apparent simplicity, demonstrates complex
behavior that has been of much interest in statistical physics. Despite the many variations and
extensions of the model that have been investigated, a systematic investigation of the effects of
changing the size of the neighborhood on the lattice in which interactions can occur has not been
made. Here we investigate the effect of varying the radius R of the von Neumann neighborhood in
which agents can interact. We show, in addition to the well-known phase transition at the critical
value of q, the number of traits, another phase transition at a critical value of R, and draw a q –
R phase diagram for the Axelrod model on a square lattice. In addition, we present a mean-field
approximation of the model in which behavior on an infinite lattice can be analyzed.

PACS numbers: 89.75.Fb, 87.23.Ge, 05.50.+q

I. INTRODUCTION

The Axelrod model of cultural dissemination [1] is an
apparently simple model of cultural diffusion, in which
“culture” is modeled as a discrete vector (of length F ),
a multivariate property possessed by an agent at each
of the N sites on a fully occupied finite square lattice.
Agents interact with their lattice neighbors, and the dy-
namics of the model are based on the two principles of
homophily and social influence. The former means that
agents prefer to interact with similar others, while the
latter means that agents, when they interact, become
more similar. Despite this apparent simplicity, in fact
the model displays a rich dynamic behavior, and does
not inevitably converge to a state in which all agents
have the same culture. Rather it will converge either to
a monocultural state, or a multicultural state, depending
on the model parameters. The Axelrod model has come
to be of great interest in statistical physics, with a num-
ber of variations and analyses conducted. A review from
a statistical physics perspective can be found in Castel-
lano et al. [2], and more recent reviews from different
perspectives in Kashima et al. [3], Ŝırbu et al. [4].
One of the best-known features of the Axelrod model is

the nonequilibrium phase transition between the mono-
cultural (ordered) and multicultural (disordered) states,
controlled by the value of q, the number of traits (possible
values of each vector element) [5, 6]. A number of vari-
ations and extensions of the model have been proposed,
including an external field (modeling a “mass media” ef-
fect), noise, and interaction via complex networks rather
than a lattice.
External influence on culture vectors, in the form of

a “generalized other” was first introduced by Shibanai
et al. [7]. Further work on external influence on cul-
ture vectors, or mass media effect, considers an external
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field which acts to cause features to become more similar
to the external culture vector with a certain probability
[6, 8–14], or variations such as nonuniform or local fields
[15, 16] or fields with adaptive features [17]. Counterin-
tuitively, these mass media effects were found to actually
increase cultural diversity rather than result in further
homogenization, an effect explained by local homogeniz-
ing interactions causing the absorbing state to be less
fragmented than when interacting with the external field
only, the latter case actually resulting in more, rather
than less, diversity [18].

The effect of noise, or “cultural drift”, foreshadowed by
Axelrod [1, p. 221], in the form of random perturbations
of cultural features, has been examined [6, 19–24]. A
sufficiently small level of noise actually promotes mono-
culture, while too high a level of noise prevents stable
cultural regions from forming (an “anomic” state, as de-
scribed by Centola et al. [22]). In fact, there is another
phase transition induced by the noise rate [19]. Another
form of noise, in the form of random error in determining
cultural similarity between agents, has also been investi-
gated [23, 24]. Noise is also incorporated in various other
extensions of the Axelrod model [10, 11, 23, 25–27].

Rather than interacting with the neighbors on a lat-
tice, neighborhoods defined by complex networks have
also been investigated, including both static [25, 28–31]
and coevolving networks [22, 32–34]. The use of com-
plex networks rather than a lattice results in the phase
transition controlled by the value of q still existing, al-
beit possibly with a different critical value. The effect of
network topology on the phase transition driven by noise
has also been investigated [35].

Another extension of the Axelrod model is the incor-
poration of multilateral influence, that is, interaction be-
tween more than two agents [13, 24]. Multilateral influ-
ence allows diversity to be sustained in the presence of
noise, when with dyadic influence it would collapse to
monoculture or anomie [24] — that is, it removes the
phase transition controlled by the noise rate described
by Klemm et al. [19].
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Although most investigations of the Axelrod model
and its extensions have been purely through computa-
tional experiments, a number of papers have used either
mean-field analysis, or proved rigorous results mathemat-
ically. The original description of the phase transition
controlled by q used mean-field analysis [5], as have some
other papers [36–38]. A rigorous mathematical analysis
is much more challenging, and has so far mostly been
restricted to the one-dimensional case [39–42], with the
exception of Li [43], who proves results for the usual two-
dimensional model. The critical behavior of the order pa-
rameter has also been investigated quantitatively for the
case of F = 2 on the square lattice and small-world net-
works [31]. Computational experiments have also been
used to investigate the relationship between the lattice
area and the number of cultures [44] and thermodynamic
quantities such as temperature, energy, and entropy [45].
For the one-dimensional case, Gandica et al. [6] propose a
thermodynamic version of the Axelrod model and demon-
strate its equivalence to a coupled Potts model, as well
as analyzing its behavior with respect to noise and an
external field. An Axelrod-like model with F = 2 on
a two-dimensional lattice is analyzed in the asymptotic
case of N → ∞ by Genzor et al. [46].

Other extensions and variations of the Axelrod model
include bounded confidence and metric features [23],
agent migration [34, 47–49], extended conservativeness
(a preference for the last source of cultural information)
[50], surface tension [51], cultural repulsion [52], the pres-
ence of some agents with constant culture vectors [53, 54],
having one or more features constant on some [55] or all
[49] agents, using empirical [56, 57] or simulated [57, 58]
rather than uniform random initial culture vectors, com-
paring mass media model predictions to empirical data
on a mass media campaign [11], coupling two Axelrod
models through global fields [59, 60], combining the Ax-
elrod model with a spatial public goods game [26], mod-
eling diffusion of innovations by adding a new trait on a
feature [61], and even using it as a heuristic for an opti-
mization problem [62].

In addition to the earliest phase diagrams showing just
q and the order parameter [5] or the noise rate r and
the order parameter [19, 24], the following phase dia-
grams, derived from either simulation experiments, or
mean-field analysis (or both), have been drawn for the
Axelrod model and various extensions (notation may be
changed from the original papers for consistency): q – B
where B is external field strength [8, 9, 11, 15, 30]; r – ν
and B – ν where r is noise rate, and ν is a parameter con-
trolling the network clustering structure [10]; q – o where
o is the degree of overlap between the layers of a multi-
layer network [25]; θ – q where θ is the “bounded confi-
dence” threshold (minimum cultural similarity required
for interaction) [23]; F – q for the one-dimensional case
[36]; κ – q where κ is the fraction of “persistent agents” or
“opinion leaders” (those with a constant culture vector)
[53, 54].

Klemm et al. [28] show a p – q phase diagram where p

is the rewiring probability on small-world network, and
also plot the relationship between the order parameter
(largest region size) and kmax/N where kmax is maxi-
mum node degree in a structured scale-free network. In
the small-world network, the phase transition still exists
and is shifted by the degree of disorder of the network.
In random scale-free networks, the transition disappears
in the thermodynamic limit, but in structured scale-free
networks the phase transition still exists. Klemm et al.

[63] examine the nature of the phase transition in the
one- and two-dimensional cases, while Hawick [64] inves-
tigates in addition three- and four-dimensional systems
as well as triangular and hexagonal lattices.

Despite these extensive investigations into various as-
pects of the Axelrod model and its variants, there has
been a surprising lack of systematic investigation of the
effect of increasing the neighborhood size, or “range of
interaction” [1] on a simple Axelrod model with dyadic
interaction on a square lattice. This is despite Axelrod
himself discussing the issue briefly [1, p. 213] and con-
ducting experiments with neighborhoods of size 8 and 12,
finding that these result in fewer stable regions than the
original von Neumann neighborhood (size 4). Flache and
Macy [24], in their model with multilateral influence, use
a larger von Neumann neighborhood size, justifying it as
empirically more plausible and a more conservative test
of the preservation of cultural diversity [24, pp. 974-975].
Their extended model makes use of the larger neighbor-
hood as its multilateral social influence uses more than
two agents in an interaction, however all their experi-
ments, including those reproducing the dyadic (interper-
sonal) influence model with noise of Klemm et al. [19],
fix the radius at R = 6, a precedent followed in a sub-
sequent paper [27], while another model using a larger
neighborhood for multilateral interactions fixes the ra-
dius at R = 2 [26].

Vázquez and Redner [37] investigate, for the special
case F = 2, the Axelrod model on a regular random
graph using a mean-field analysis, giving an analytic ex-
planation for the non-monotonic time dependence of the
number of active links. Increasing the coordination num-
ber may be considered to be similar to increasing the
neighborhood size on a lattice with fixed coordination
number — in both cases all agents have the same num-
ber of “neighbors” (aside from edge effects in the case
of finite lattices), which increases monotonically with
the coordination number or von Neumann radius respec-
tively. Vázquez and Redner [37] find that larger coor-
dination numbers give better agreement between their
master equation and Axelrod model simulations, but do
not describe a phase transition controlled by the coordi-
nation number.

Here we investigate the effect of varying the radius
of the von Neumann neighborhood in which agents can
interact, and find another phase transition in the Axelrod
model at a critical value of the radius R, as well as the
well-known phase transition at a critical value of q [5],
and draw a q – R phase diagram for the Axelrod model
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R = 1 R = 2 R = 3

FIG. 1. Von Neumann neighborhoods of radius R = 1, R = 2,
and R = 3. The focal agent is shown in black and the von
Neumann neighborhood for that agent in gray.

on a square lattice.

II. MODEL

Each of the N agents on the fully occupied L×L lattice
(N = L2) has an F -dimensional culture vector (F ≥ 2)
σi = (σi,1, . . . , σi,F ) for all 1 ≤ i ≤ N . Each entry of the
cultural vector represents a feature and takes a single
value from 1 to q, so, more precisely, σi,f ∈ {1, . . . , q} for
all 1 ≤ i ≤ L2 and 1 ≤ f ≤ F . Each of the F elements is
referred to as a “feature”, and q is known as the number
of “traits”. The cultural similarity of two agents is the
number of features they have in common. If element f of
the culture vector belonging to agent i is σi,f , then the
cultural similarity 0 ≤ c(i, j) ≤ 1 of two agents i and j is
a normalized Hamming similarity

c(i, j) =
1

F

F
∑

k=1

δσi,k,σj,k
(1)

where δx,y is the Kronecker delta function.
An agent can interact with its neighbors, tradition-

ally (as was originally used by Axelrod [1], for example),
defined as the von Neumann neighborhood, that is, the
four (north, south, east, west) surrounding cells on the
lattice, so the number of potentially interacting agents is
the lattice coordination number g = 5. Here we extend
this to larger von Neumann neighborhoods by increasing
the radius R, that is, extending the neighborhood to all
cells within a given Manhattan distance, as was done by
Flache and Macy [24]. This is illustrated in Figure 1.
Hence the number of potentially interacting agents (the
focal agent and all its neighbors) in the von Neumann
neighborhood with radius R is now g(R) = 2R(R+1)+1
[65, 66] at most (we do not use periodic boundary condi-
tions).
Initially, the agents are assigned uniform random cul-

ture vectors. The dynamics of the model are as follows.
A focal agent a is chosen at random, and another agent
b from the radius R von Neumann neighborhood is also
chosen at random. With probability proportional to their
cultural similarity (the number of features on which they
have identical traits), the two agents a and b interact.
This interaction results in a randomly chosen feature on

a whose value is different from that on b being changed to
b’s value. This process is repeated until an absorbing, or
frozen, state is reached. In this state, no more change is
possible, because all agents’ neighbors have either identi-
cal or completely distinct (no features in common, so no
interaction can occur) culture vectors.
In the absorbing state, the agents form cultural re-

gions, or clusters. Within the cluster, all agents have
identical culture vectors. Then the average size of the
largest cluster, 〈Smax〉 /L

2 is used as the order parameter
[2, 5, 28], separating the ordered and disordered phases.
In a monocultural (ordered) state, 〈Smax〉 /L

2 ≈ 1, a
single cultural region covers almost the entire lattice; in
a multicultural (disordered) state, multiple cultural re-
gions exist. Other order parameters that have been used
include the number of cultural domains [1, 24], mean
density of cultural domains [67], entropy [68], overlap
between neighboring sites [63], and activity (number of
changes) per agent [69].
Source code for the model (implemented in C++

and Python with MPI [70]) is available from
https://sites.google.com/site/alexdstivala/
home/axelrod_qrphase/.

III. RESULTS

Figure 2 shows the order parameter (largest region
size) plotted against q for F = 5, on three different lat-
tice sizes. It is apparent that, as the size of the von
Neumann neighborhood is increased, the critical value
of q also increases. That is, by allowing a larger range
of interactions, a larger scope of cultural possibilities is
required in order for a multicultural absorbing state to
exist. Increasing the lattice size has a similar effect, al-
though, as we shall show in Section IV, there is still a
finite critical value of q in the limit of an infinite lattice.
Figure 3 shows the order parameter (largest region

size) plotted against the von Neumann radius for F = 5,
various values of q, and three different lattice sizes. In
each case (apart from the smallest value of q, in which
a monocultural state always prevails), there is a phase
transition visible between a multicultural state (for R
less than a critical value) and a monocultural state. Note
that when R is sufficiently large relative to the lattice size
L, every agent has every other agent in its von Neumann
neighborhood, and hence the situation is equivalent to
a complete graph or a well-mixed population (or “soup”
[71, p. 132]). In this situation, it has long been known
that heterogeneity cannot be sustained [1, 71]. Fig. 3
shows that there appears to be a phase transition con-
trolled by R, between the multicultural phase and the
monocultural phase. As the size of the neighborhood
increases, so does the probability of an agent finding an-
other agent with at least one feature in common with
which to interact, and hence local convergence can hap-
pen in larger neighborhoods, resulting in larger cultural
regions. However this does not result, at the absorbing
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FIG. 2. The order parameter 〈Smax〉 /L
2 (largest region size)

plotted against the number of traits q for the Axelrod model
for F = 5, four different values of the von Neumann radius
R, and three lattice sizes. Each data point is the average over
50 independent runs and error bars show the 95% confidence
interval. Vertical dashed lines show the critical value of q,
where the variance of the order parameter is largest.
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FIG. 3. The order parameter 〈Smax〉 /L
2 (largest region size)

plotted against the von Neumann radius R for the Axelrod
model for F = 5, some different values of q, and three lattice
sizes. Each data point is the average over 50 independent
runs and error bars show the 95% confidence interval. Vertical
dashed lines show the critical value of R, where the variance
of the order parameter is largest.

state (for a fixed value of q), in a gradual increase in max-
imum cultural region size from a completely fragmented
state to a monocultural state. Rather, global polariza-
tion (a multicultural absorbing state) still occurs for suf-
ficiently small R, but at the critical value of the radius
Rc there is a phase transition so that for neighborhoods
defined by R > Rc a monocultural state prevails.
This phase transition is further apparent in Figure 4,

which shows histograms of the distribution of the order
parameter (largest region size) at the critical radius for
some different values of q. That is, for each value of q,
the radius Rc at which the variance of the order param-
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FIG. 4. Distribution of the order parameter at the critical
radius for some different values of q, with F = 5, L = 100.
Each distribution is from 50 independent runs.
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FIG. 5. q – R phase diagram showing the order parameter
〈Smax〉 /L

2 for the Axelrod model for F = 5 and three lattice
sizes (L = 25, L = 50, and L = 100). Each data point is
colored according to the size of the largest region 〈Smax〉 /L

2

averaged over 50 independent runs.

eter is greatest. This shows the bistability of the order
parameter at the critical radius, where the two extreme
values are equally probable [28].
Figure 5 colors points on the q – R plane according

to the value of the order parameter, resulting in q – R
phase diagram. A multicultural state only results for suf-
ficiently large values of q and small values of R. Figure 6
shows the phase transition more clearly, with the mul-
ticultural states in the upper left of the plane and the
monocultural states in the bottom right.

IV. MEAN-FIELD ANALYSIS

We detail the mean-field analysis carried out by Castel-
lano et al. [5] who gave a differential equation. In the
mean-field setting, we focus on the bonds between sites
(or agents) located on an infinite lattice, so we can as-
sume that each site and its von Neumann neighborhood
consists of exactly g(R) sites. The infinite lattice setting
naturally implies that we do not consider edge effects.
For a single, randomly chosen bond between two sites,

we let Pm(t) be the probability that the bond is of typem
at time t, so both sites of the bond share m common fea-
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FIG. 6. q – R phase diagram for the Axelrod model for F = 5
and three lattice sizes (L = 25, L = 50, and L = 100). As in
Klemm et al. [28], the arbitrary, but small, value of 0.1 is used
as the value of the order parameter to plot the critical value
of q separating the monocultural and multicultural region for
each value of the von Neumann neighborhood radius R.

tures, while F −m features are different. If the randomly

chosen bond is connected to sites i and j, then

m = #{σi,f = σj,f : f ∈ {1, . . . , q}}.

At time t = 0, we denote by ρ0 the probability of a
single feature of any two sites being common, so ρ0 =
P(σi,f = σj,f ). If the features are distributed uniformly
from 1 to q, then ρ0 = 1/q. It is sometimes assumed
that the features have a Poisson distribution [5, 36, 44,
67, 68] with mean q, so then application of the Skellam
distribution gives ρ0 = e−2qI0(2q), where I0 is a modified
Bessel function of the first kind. For the single bond,
the number of common features is a binomial random
variable, so

Pm(0) =

(

F

m

)

ρm0 (1− ρ0)
F−m.

Castellano et al. [5] derived a master equation, also
known as a forward equation, given by

dPm(t)

dt
=

F−1
∑

k=1

k

F
Pk(t)

[

δm,k+1 − δm,k + (g − 1)

F
∑

n=0

(

Pn(t)W
(k)
n,m(t)− Pm(t)W (k)

m,n(t)
)

]

, (2)

where W
(k)
n,m(t) is the probability that an n-type bond

becomes an m-type bond due to the updating of a k-
type neighbor bond [72]. This equation is only defined
for 1 ≤ m ≤ F , but naturally the probabilities sum to
one, giving

P0(t) = 1−

F
∑

m=1

Pm(t).

For 1 < m ≤ F , we show [72] that the master equation
or, rather, the set of nonlinear differential equations (2)
can be re-written as

dPm(t)

dt
=

[

m− 1

F
Pm−1(t)−

m

F
Pm(t)

]

+ (g − 1)
[

Pm−1(t)W
(k)
m−1,m(t)

− Pm(t)W
(k)
m,m−1(t)

+ Pm+1(t)W
(k)
m+1,m(t)

− Pm(t)W
(k)
m,m+1(t)

]

F−1
∑

k=1

k

F
Pk(t), (3)

and zeroth differential equation is

dP0(t)

dt
= −

F
∑

m=1

dPm(t)

dt
. (4)

As in Castellano et al. [5], we can investigate model dy-
namics within the mean-field treatment by studying the

density na =
∑F−1

i=1 Pi of active bonds, that is a bond
across which at least one feature is different and one the
same. Hence in an absorbing (frozen) state, na = 0.
In the mean-field analysis, since an infinite lattice is as-
sumed, na = 0 only when a multicultural absorbing state
is reached; as noted by Castellano et al. [5], the coarsen-
ing process by which a monocultural state is formed lasts
indefinitely on an infinite lattice.

Figure 7 plots the number of active bonds against the
value of q for some different values of R within the mean-
field approximation. It can be seen that the behavior is
qualitatively the same as that shown in Fig. 2 for the
simulations on finite lattices: the critical value of q is
higher for larger neighborhood sizes. On finite lattices,
larger lattice sizes also increase the critical value of q for
a given neighborhood size, however on an infinite lattice,
there is still a finite critical value of q for a given neigh-
borhood size. This suggests that, if the lattice size in
the simulation could be increased further (a very com-
putationally demanding process), eventually the critical
values would approach those obtained in the mean-field
approximation.

V. CONCLUSION

The original Axelrod model had agents only interact
with their immediate neighbors on a lattice, modeling
the assumption of that geographic proximity largely de-
termines the possibility of interaction. Subsequent work
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FIG. 7. Phase diagram within the mean-field approximation
for some different values of the von Neumann radius R. The
value of na(t) (shown at t = 103) is obtained by numerical
integration of (3) and (4).

has extended this to neighbors on complex networks, or
allowed agent migration, or assumed a well-mixed popu-
lation (infinite-ranged social interactions) on the assump-
tion that online interactions are making this assumption
more realistic [56].

Despite these, and other, increasingly sophisticated
modifications of the Axelrod model, however, an exami-
nation of the consequences of simply extending the lattice
(von Neumann) neighborhood had not been carried out.
We have done so, and shown another phase transition
in the model, controlled by the von Neumann radius R,
as well as the well-known phase transition at the critical
value of q, and drawn a q – R phase diagram. We have
also used a mean-field analysis to analyze the behavior
on an infinite lattice.

These results show that, as well as the value of q, the
“scope of cultural possibilities” [1], having a critical value

above which a multicultural state prevails, there is also
a critical value of the radius of interaction, above which
a monocultural state prevails. This simply says that,
rather unsurprisingly, a world in which people can only
interact with their immediate neighbors is (for a fixed
value of q), more likely to remain multicultural than one
in which people can interact with those further away.
Given this inevitability of a monocultural state for large
enough “neighborhoods”, it might be more useful to con-
sider alternative measurements of cultural diversity, such
as the “long term cultural diversity” measured using
the curve plotting the number of final cultural domains
against the initial number of connected cultural compo-
nents, as the bounded confidence threshold is varied, as
described by Valori et al. [56] (where a well-mixed popu-
lation was assumed, and hence a monocultural state re-
sults for when the bounded confidence threshold is zero).
An obvious extension of this work is to examine the be-
havior of the Axelrod model on complex networks where
the neighborhood is extended to all agents within paths
of length R on the network.
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[8] J. C. González-Avella, M. G. Cosenza, and K. Tucci,

Phys. Rev. E 72, 065102(R) (2005).
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K. Klemm, J. L. Herrera, and M. San Miguel, Phys.
Rev. E 73, 046119 (2006).

[16] L. R. Peres and J. F. Fontanari, Phys. Rev. E 86, 031131
(2012).

[17] S. Pinto, P. Balenzuela, and C. O. Dorso, Physica A
458, 378 (2016).

[18] L. R. Peres and J. F. Fontanari, Europhys. Lett. 96,
38004 (2011).
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