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Abstract

Exponential random graph models (ERGMs) are widely used for modeling social
networks observed at one point in time. However the computational difficulty of ERGM
parameter estimation has limited the practical application of this class of models to
relatively small networks, up to a few thousand nodes at most, with usually only a few
hundred nodes or fewer. In the case of undirected networks, snowball sampling can be
used to find ERGM parameter estimates of larger networks via network samples, and
recently published improvements in ERGM network distribution sampling and ERGM
estimation algorithms have allowed ERGM parameter estimates of undirected networks
with over one hundred thousand nodes to be made. However the implementations of
these algorithms to date have been limited in their scalability, and also restricted to
undirected networks. Here we describe an implementation of the recently published
Equilibrium Expectation (EE) algorithm for ERGM parameter estimation of large
directed networks. We test it on some simulated networks, and demonstrate its
application to an online social network with over 1.6 million nodes.

Introduction

Exponential random graph models (ERGMs) are a class of statistical model often used
for modeling social networks [1, 2]. Parameter estimation in these models is a
computationally difficult problem, and algorithms based on Markov chain Monte Carlo
(MCMC) are generally used [2–10]. The computational time required by these methods
places a limit on the size of networks for which models can be estimated in practice. A
recently published new algorithm for sampling from the ERGM distribution can reduce
this time by an order of magnitude [11], and a new estimation algorithm even more [12],
however scalability is still a problem when extremely large networks are considered. It is
also worth noting that the state space for a directed network is far larger than for an
undirected network with the same number of nodes [13], and so this problem is even
more difficult in the case of directed networks.

One solution to this problem is to take snowball samples [14–18] from the original
network, and estimate ERGM parameters from these [19,20]. The first description of
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such a method was [19]. However this method requires that estimation over the entire
set of random tie variables is feasible, limiting the size of networks to which the method
can be applied in practice. A more recently proposed method [20] is to estimate
parameters for each sample in parallel with conditional estimation [21], combining the
estimates with a meta-analysis [22] or using bootstrap methods [23] to estimate the
standard errors. This work, however, was only applied to undirected networks.

However the problem of directly estimating ERGM parameters for a very large
network (rather than from snowball samples) remains, particularly for directed networks
where snowball sampling is not straightforward. Here we describe an implementation of
the Equilibrium Expectation (EE) method [12] extended to directed networks, which is
scalable and efficient enough to be used to estimate ERGM parameters for networks
with over one million nodes.

Hunter & Handcock [6, p. 581] note that the largest network estimated to date (in
2006) was the N = 2209 nodes adolescent friendship network estimated by Hunter,
Goodreau, & Handcock [24]. However this network was treated as undirected. Larger
undirected networks subsequently had ERGM models estimated indirectly by snowball
sampling, with the largest having 40 421 nodes [20]. By using an improved ERGM
distribution sampler, Byshkin et al. [11] could directly estimate ERGM parameters for a
3061 node patient transfer network (treated as undirected), and the Equilibrium
Expectation algorithm was demonstrated on an undirected online social network with
104 103 nodes [12]. Using the implementation described in this paper, modified to use a
simplified EE algorithm, Borisenko, Byshkin, & Lomi [25] are able to estimate a simple
ERGM model of a 75 879 node directed network.

We note that social networks are typically sparse, and we assume sparsity for
efficient data structures. There is some specific work on sampling methods for ERGMs
for large sufficiently dense networks with additional assumptions [26] such as the
presence of block structure [27,28] but here we assume only sparsity, and that the
network can plausibly be described by an exponential random graph model.

In this paper, we describe an implementation of the EE algorithm, including the
improved fixed density ERGM sampler [11] for application to directed networks. By
implementing these algorithms and the associated computations of change statistics in a
more efficient and scalable manner, we are able to estimate ERGM parameters for
networks far larger than previously possible, even using existing implementations of the
algorithms used for the computational experiments in the papers originally describing
them [11,12]. The implementation we describe allows ERGM parameter estimation for
a model of a directed network with over one million nodes, while existing methods are
only practical on networks of a few thousand nodes at most. We test the
implementation first on simulated networks with known model parameters, in order to
validate that it works correctly, and then demonstrate its application to an online social
network with over 1.6 million nodes.

Exponential random graph models

An ERGM is a probability distribution with the form

Pr(X = x) =
1

κ
exp

(∑
A

θAzA(x)

)
(1)

where

• X = [Xij ] is a 0-1 matrix of random tie variables,

• x is a realization of X,
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• A is a configuration, a (small) set of nodes and a subset of ties between them,

• zA(x) is the network statistic for configuration A,

• θA is a model parameter corresponding to configuration A,

• κ is a normalizing constant to ensure a proper distribution.

Which configurations A are allowed depends on the assumptions as to which ties are
independent. Here we will use the social circuit dependence assumption [7, 29], under
which two potential ties are conditionally dependent exactly when, if they were
observed, they would form a 4-cycle in the network [13]. Configurations allowed by
other, simpler, dependence assumptions (Bernoulli, dyad-independent,
Markov [1, pp. 56–57]) are also allowed in these models.

Under this assumption, we will now describe the structural configurations used in
this work. In the following, N is the number of nodes in the network.

The simplest configuration, included in every model, is Arc, analogous to the
intercept in a regression. Arc is included to account for the overall density of the
network observed. Its corresponding statistic is zL =

∑N
i=1

∑N
j=1 xij , the number of

arcs in the graph. The Reciprocity parameter is used to test for propensity of arcs to be
reciprocated, and its statistic is zReciprocity =

∑N
i=1

∑N
j=1 xijxji.

The degree distribution in a directed network is modeled with the alternating
k-out-star and alternating k-in-star configurations defined by [29] and illustrated in
Fig 1. The statistic for k-out-star is defined as:

zAoutS =

N−1∑
k=2

(−1)k
SOut
k

λk−2
(2)

where SOut
k is the number of k-out-stars and λ ≥ 1 is a damping parameter. We use

λ = 2 in this work, as used previously in, for example, [20, 29]. We note that in a more
general form of ERGM, the curved exponential family random graph model [6], it is also
possible to estimate (a parameter equivalent to) the parameter λ, and this is routinely
done using the statnet software [30–33]. However the EE algorithm requires that every
model parameter has a corresponding change statistic, and so cannot estimate curved
ERGMs [12]. For this reason assume a fixed value for λ.

The zAinS statistic for k-in-stars is defined similarly.

Fig 1. Alternating k-star structures for modeling degree distribution in
directed networks. Alternating k-in-star models popularity spread and alternating
k-out-star models activity spread.

Activity spread

Alt. out-star

AoutS

Popularity spread

Alt. in-star

AinS

Path closure and multiple connectivity are modeled with the alternating transitive
k-triangles and alternating two-paths effects defined by [29] and illustrated in Fig 2.
These statistics are defined as [34]:

zAT−T = λ

N∑
i=1

N∑
j=1

xij

[
1−

(
1− 1

λ

)L2(i,j)
]

(3)
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where L2(i, j) =
∑N

h=1 xihxhj is the number of directed two-paths from i to j, and

zA2P−T = λ

N∑
i<j

[
1−

(
1− 1

λ

)L2(i,j)
]

(4)

As well as path closure (AT-T) we can also define cyclic closure (AT-C), in which
arcs constituting the triangles form a cycle. Its statistic zAT−C is defined analogously to
zAT−T but counting cyclic k-triangles rather than transitive k-triangles:

zAT−C = λ

N∑
i=1

N∑
j=1

xji

[
1−

(
1− 1

λ

)L2(i,j)
]

(5)

We also include the shared popularity configuration A2P-D [13], the statistic for
which zA2P−D is defined analogously to zA2P−T, but rather than counting directed
paths between two nodes via k intermediate nodes, it counts “paths” where the each of
the k intermediate nodes have arcs directed towards each of the two nodes (see Fig 2):

zA2P−D = λ

N∑
i<j

[
1−

(
1− 1

λ

)L2D(i,j)
]

(6)

where L2D(i, j) =
∑N

h=1 xhixhj . We then define the configuration A2P-TD which is the
sum of the A2P-D and A2P-T statistics, adjusting for double-counting:

zA2P−TD = zA2P−T +
zA2P−D

2
(7)

The shared activity configuration A2P-U [13], the statistic for which is zA2P−U is
similar to A2P-D, but counts “paths” where each of the k intermediate nodes have arcs
directed from the pairs of nodes to the intermediate nodes (see Fig 2):

zA2P−U = λ

N∑
i<j

[
1−

(
1− 1

λ

)L2U (i,j)
]

(8)

where L2U (i, j) =
∑N

h=1 xihxjh.
The statistics for the closures corresponding to the open path types A2P-D and

A2P-U, popularity closure (AKT-D) and activity closure (AKT-U), respectively, are
defined similarly to the way path closure (AKT-T) is defined for the corresponding
multiple two-paths A2P-T.

These configurations are illustrated in Fig 2.
In addition, we will allow nodes to have binary, categorical, or continuous attributes,

and use the following additional configurations using these nodal attributes. For the
binary attribute, we use the four configurations Sender, Receiver, and Interaction,
illustrated in Fig 3. The Sender parameter indicates increased propensity of a node with
the True value of the binary attribute to “send” a tie to another node, and the Receiver
the increased propensity of a node with the True value of the attribute to “receive” a tie
from another node (both irrespective of the attribute value of the other node). The
Interaction parameter indicates increased propensity for two nodes both with the True
value of the attribute to have an arc connecting them. The corresponding statistics are
defined as follows (where we now use the notation

∑
i,j for summation over all pairs of
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Fig 2. Alternating transitive k-triangle and alternating k-2-paths structures.
These are used for modeling social circuit dependence including path closure and shared
popularity. The A2P-TD configuration counts k-2-paths (A2P-T) and shared popularity
(A2P-D) configurations in a single configuration, adjusting for double counting.

Shared popularity

A2P-D

 

Multiple 2-paths

A2P-T

 

Path closure

AKT-T

 

Cyclic closure

AKT-C

 

Shared activity 

A2P-U 

Activity closure 

AKT-U 

Popularity closure

AKT-D

nodes i ∈ {1 . . . N}, j ∈ {1 . . . N}, i 6= j):

zSender =
∑
i,j

aixij (9)

zReceiver =
∑
i,j

ajxij (10)

zInteraction =
∑
i,j

aiajxij (11)

where ai ∈ {0, 1} is the value of the binary attribute on node i.

Fig 3. Binary attribute configurations. The dark nodes represent actors with the
binary attribute, and the lighter shaded nodes represent actors with or without the
attribute.

InteractionReceiverSender

For the categorical attribute, the Matching and Mismatching parameters indicate
the increased propensity for a node to send a tie to another node with, respectively, the
same, or different, value of the categorical attribute. The Matching reciprocity and
Mismatching reciprocity parameters indicate the increased propensity for such ties to be
reciprocated. These configurations are illustrated in Fig 4 and the corresponding
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statistics are defined by:

zMatching =
∑
i,j

δci,cjxij (12)

zMismatching =
∑
i,j

(1− δci,cj )xij (13)

zMatching reciprocity =
∑
i,j

δci,cjxijxji (14)

zMismatching reciprocity =
∑
i,j

(1− δci,cj )xijxji (15)

where ci is the value of the categorical attribute at node i and δx,y is the Kronecker
delta function

δx,y =

{
0 if x 6= y,
1 if x = y.

(16)

Fig 4. Categorical attribute configurations. The filled and empty nodes
represent actors with two different values of the categorical attribute.

Matching Matching reciprocity

Mismatching Mismatching reciprocity

For a continuous attribute ui on a node i, we also define the (continuous) Sender,
Receiver and Difference statistics as follows:

zcontinuousSender =
∑
i,j

uixij (17)

zcontinuousReceiver =
∑
i,j

ujxij (18)

zDiff =
∑
i,j

|ui − uj |xij (19)

These indicate, respectively, the increased propensity of a node to send ties for higher
values of its continuous attribute, the increased propensity of a node to receive ties for
higher values of its continuous attribute, and the increased propensity of nodes to have
a tie between them for smaller absolute differences in their continuous attributes. The
latter is a simple measure of homophily, the tendency for nodes with similar values of
the attribute to have a tie between them.

Note that in ERGM estimation algorithms these statistics as defined above never
actually need to be computed directly. Instead only the corresponding change statistics
are computed [6, 10, 24, 29, 31]. The change statistic is the change in the statistic due to
the addition or deletion of an arc, which is much faster to compute. For example the
most basic statistic is zL, the count of the number of arcs in the graph. Computing this
statistic therefore requires counting the number of arcs in the graph, however the
corresponding change statistic is simply the constant 1 (or -1 for deleting an arc):
adding an arc increases the statistic by 1, and deleting an arc decreases it by 1.
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Equilibrium expectation algorithm

Monte Carlo based methods, such as Markov chain Monte Carlo maximum likelihood
estimation (MCMCMLE) [6] and stochastic approximation [5] as well as Bayesian
methods [8], as reviewed for example by Hunter et al. [10], all require drawing simulated
networks from the ERGM distribution. This can be achieved using a
Metropolis–Hastings algorithm, and a number of samplers are available [5, 10,11,35].
However all these methods require that a number of network samples are drawn from
the stationary ERGM distribution, for each updated value of the parameter vector
being estimated, which may require a very large number of iterations, and limits the
size of networks to which these methods can be applied in practice.

In contrast, the EE algorithm [12] does not require these potentially very long
MCMC simulations between parameter updates. The EE algorithm is related to
persistent contrastive divergence (PCD) [25,36,37] and is fast because it adjusts its
parameters according the difference between the observed network statistics and the
statistics of a current non-equilibrium state of the Markov chain of simulated networks.
It may be thought of as a kind of gradient ascent method, and depends on the property
of the exponential family (to which the ERGM distribution belongs) that the expected
value of a statistic is a monotonically increasing function of the corresponding
parameter [38, Ch. 8]. It works by starting the chain of simulated networks at the
observed network (not the empty network for example), and taking only a small number
of Metropolis–Hastings steps, before adjusting the estimated parameter values according
to the divergence of the simulated network statistics from the observed network
statistics. After sufficiently many iterations of this process (which in practice is many
orders of magnitude smaller than the number of Metropolis–Hastings steps required to
find the stationary ERGM distribution), the divergence of each of the statistics from the
observed statistics oscillates around zero, and the corresponding parameters oscillate
around a value which is taken to be an estimate of the MLE.

A version of contrastive divergence (CD) [39] is used to compute initial values of the
ERGM parameter estimates [40,41] for the EE algorithm [12]. Details of the EE
algorithm, as first described in [12, Supplementary Information], and of the IFD
sampler, [11] are provided in S1 Appendix.

Materials and methods

Parameter estimation

Parameters are estimated using a new implementation of the EE algorithm, which we
call EstimNetDirected. This implementation has change statistics for directed (rather
than undirected as in the original description [12]) networks, and uses efficient data
structures in order to scale to very large (over one million node) networks. Both the
“basic” ERGM sampler (as used in the PNet [42] software) and the improved fixed
density (IFD) ERGM sampler [11] are implemented.

The network is stored as an adjacency list data structure for space efficiency and fast
computation of change statistics. A “reversed” adjacency list is also maintained. This
stores, for each node j, a list of nodes i for which the arc i→ j exists. This allows
efficient computation of change statistics that require the in-neighbours of a node. In
addition, a flat list of all arcs is maintained, for efficient implementation of the IFD
sampler, which requires finding an arc uniformly at random for arc deletion moves [11].

For efficient computation of the “alternating” two-path and triangle change
statistics, it is necessary to keep track of the counts of two-paths between each pair of
nodes. It is not scalable to store these two-paths matrices as arrays as in earlier
implementations [12,42], so instead hash tables can be used, where the key is a node

November 22, 2019 7/24



pair (i, j) and the value is the relevant two-path count (which is zero if the key is not
present). This takes advantage of the sparsity (approximately 0.06% nonzero in the
empirical example described here) of these matrices and still allows fast (asymptotically
constant time) lookup. In addition, a Bloom filter [43] is used so that the
overwhelmingly more frequent case of looking up an entry that is not present is faster.
During the MCMC ERGM sampling process, in which arcs are added and deleted,
entries in the two-path tables that fall to zero are deleted, in order to stop the tables
from growing in size indefinitely, however this diminishes the effectiveness of the Bloom
filter.

We run a number of estimations independently (and in parallel to minimize elapsed
time).

Standard error estimation

For each parallel estimation run, the point estimates and their standard errors are
estimated. The point estimate (mean) and asymptotic covariance matrix for MCMC
standard error are estimated using the multivariate batch means method [44,45] using
the mcmcse R package [46]. The covariance matrix for the error in inherent in using the
MLE is estimated as the inverse of the covariance matrix of the simulated statistics
(Fisher information matrix) [5, 6] also using mcmcse. The total estimated covariance
matrix is then estimated as the sum of these two covariance matrices, and from this we
compute the standard error as the square root of the diagonal.

The overall estimate and its standard error are then computed as the inverse
variance weighted average [47, Ch. 4] of the results calculated from each independent
(parallel) estimation.

Implementation and availability

EstimNetDirected is implemented in the C programming language using the message
passing interface (MPI) for parallelization on computing clusters. The uthash [48]
macro collection is used to implement hash tables (including Bloom filter) and the
Random123 counter-based pseudo-random number generator [49] is used to generate
pseudo-random numbers for the MCMC process. Scripts for processing network data
formats, estimating standard errors, and generating plots and fitting heavy-tailed
distributions are written in R and Python and use the igraph [50], SNAP [51],
ggplot2 [52], PropCIs [53], mcmcse [46], and poweRlaw [54] packages.

All source code and scripts are publicly available on GitHub at
https://github.com/stivalaa/EstimNetDirected.

Simulated networks

To ensure that the parameter estimation algorithm works correctly, we first apply it to
estimating ERGM parameters of networks with known true values, and measure the
bias, root mean square error (RMSE), coverage, and Type I and Type II error rates in
statistical inference. To do so we simulate sets of 100 networks sampled from an ERGM
network distribution with known parameters, and then estimate the parameters of each
of the 100 networks with EstimNetDirected. This allows the mean bias and RMSE to
be estimated. The coverage is then the percentage of the 95% confidence intervals which
contain the true value of the parameter. Coverage higher than the nominal 95%
indicates overly conservative (high) estimates of the standard error, and coverage lower
than the nominal value indicates overly optimistic (low) values of the standard error
(uncertainty). In addition, we estimate the Type II error rate in inference (the false
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negative rate), as the percentage of estimations in which the estimated 95% confidence
interval includes zero.

To estimate the Type I error rate (false positive rate) for inference of an ERGM
parameter significance, we generate simulated networks in which the parameter in
question is zero, and proceed as just described. Then the Type I error rate is estimated
as the percentage of estimations in which the 95% confidence interval does not include
zero.

We generate two sets of graphs from ERGM distributions, both with N = 2000
nodes. First, a network with binary node attributes and parameters (Arc, Reciprocity,
AinS, AoutS, AT-T, A2P-TD, Interaction, Sender, Receiver) = (-1.00, 4.25, -2.00, -1.50,
0.60, -0.15, 2.00, 1.50, 1.00), and, second, a network with categorical node attributes
and parameters (Arc, Reciprocity, AinS, AoutS, AT-T, A2P-TD, Matching, Matching
reciprocity) = (-1.00, 4.25, -2.00, -1.50, 1.00, -0.15, 1.50, 2.00). For each of the two sets
of parameters, we generated 100 samples from a network distribution with those
parameters using PNet [42]. For networks with a binary attribute, 50 of the nodes
(2.5%), selected at random, have the True value, and the rest False. For networks with a
categorical attribute, the attribute at each node is assigned one of three possible values
uniformly at random. The networks are sampled with sufficient burn-in (of the order of
109 iterations) to ensure initialization effects are minimized, and samples are taken
sufficiently far apart (separation of the order of 108 iterations) to ensure that they are
essentially independent. Table 1 shows summary statistics of the simulated networks.

Table 1. Statistics of the simulated directed networks.

N Attributes Zero effect Mean components Mean degree Mean density Mean c.c.

2000 Binary None 1.05 2.65 0.00132 0.00482
2000 Categorical None 1.00 3.79 0.00189 0.05655
2000 Binary Sender 1.02 2.60 0.00130 0.00323
2000 Binary Receiver 1.03 2.61 0.00131 0.00338
2000 Binary Reciprocity 1.03 2.58 0.00129 0.00339
2000 Binary Interaction 1.00 2.63 0.00131 0.00326
2000 Binary AT-T 1.00 2.63 0.00132 0.00215
2000 Binary A2P-TD 1.00 3.68 0.00184 0.13192
2000 Binary AinS 1.00 9.95 0.00498 0.32332
2000 Binary AoutS 1.00 6.74 0.00337 0.36730
2000 Categorical Matching 1.04 2.67 0.00134 0.00643
2000 Categorical Match. Recip. 1.00 3.16 0.00158 0.00966
2000 Categorical Reciprocity 1.00 3.04 0.00152 0.00707
2000 Categorical AT-T 1.00 3.49 0.00175 0.00331
2000 Categorical A2P-TD 5.97 1.83 0.00092 0.00802
2000 Categorical AinS 1.00 5.38 0.00269 0.10851
2000 Categorical AoutS 1.11 3.16 0.00158 0.04159

“c.c.” is the global clustering coefficient. Note that for the Categorical attribute networks with AinS, AoutS, and A2P zero
effects, the Arc parameter is set to -4.0 rather than -1.0 to avoid the network becoming dense.

Empirical network

As an example application we use EstimNetDirected to estimate an ERGM model of the
Pokec online social network [55] which is publicly available from the Stanford large
network dataset collection [56]. Pokec is the most popular online social network in
Slovakia [55] and represents a sizable percentage of Slovakia’s population [57]. This
publicly available data is also unusual and particularly useful as a test case for social
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network algorithms as it is the entire online social network at a point in time, rather
than a sample as is often the case, and the nodes are annotated with attributes,
specifically including gender, age, and region (187 of them, Slovakia or elsewhere) which
we use as nodal covariates in the model.

This network has 1 632 803 nodes and 30 622 564 arcs (directed graph density
approximately 10−5 and mean degree 37.5). The nodes are users of the Pokec online
social network, and arcs represent directed “friendship” relations, i.e. unlike many
online social networks, “friendships” are not assumed to be automatically reciprocated
(undirected). In fact only approximately 54% of the “friendship” relations are
reciprocated. More details and descriptive statistics of this network are in [55].

The Pokec online social network has been previously used as a test bed for social
network analysis algorithms, and in particular by Kleineberg & Boguñá [57] who use it
to test a model of the evolution of an online social network. They treat the final state of
the network as a representation of a true social network, as do we, in order to
demonstrate EstimNetDirected estimation of an ERGM, which is a cross-sectional
network model. However they treat the network as undirected, including only
reciprocated ties, while we maintain the directed nature of the network.

The Pokec degree distribution was described as “scale-free” in [55], but based only
on visual examination of the degree-frequency plot. This technique, or similarly, fitting
a straight line to a degree-frequency log-log plot, is now well known to be not a sound
technique for assessing whether a distribution is scale-free or follows a power law [58–60].
Using the statistical method described by Clauset et al. [58] as implemented in the
powerRlaw R package [54], we find that the neither the in- nor out-degree distribution
of the Pokec online social network is consistent with a power law distribution (Fig 5).

Fig 5. Pokec network degree distribution. Neither the in- nor the out-degree
distribution are consistent with power law or log-normal distributions (p < 0.01).
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Nevertheless, it is clear from Fig 5 that there are hubs in the network, that is, nodes
with an order of magnitude higher degree than most other nodes. In particular, there is
a noticeable “break” in the empirical cumulative distribution function (CDF) plot at
degree 1000, most noticeable for the out-degree distribution. According to Takac &
Zabovsky, “hubs in Pokec are not people but commercial companies...” [55, p. 5].

Based on these observations, and on the fact that an initial attempts to estimate an
ERGM for the entire network did not converge, we remove all nodes with in- or
out-degree greater than 1000 from the network. There are only 20 such nodes (0.001%
of the nodes), and removing them does not significantly change the density or mean
degree. However it breaks the network, which was initially a single connected
component, into 577 components, although the giant component has 1 632 199 nodes
(99.96% of the total). This indicates that these hubs are not performing the function of
holding different components of the network together into a connected whole, as their
removal only results in the creation of a relatively small number of isolated nodes,
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rather than splitting the network into multiple large components, and that therefore
their removal is not substantively changing the nature of the network structure. The
in-degree distribution of network with hubs removed is consistent with a power law,
although the out-degree distribution is not (Fig 6).

Fig 6. Pokec network degree distribution after hub nodes are removed.
After removing the 20 nodes that have in- or out-degree greater than 1000, the resulting
network’s in-degree distribution is consistent with a power law distribution, but not
with a log-normal distribution (p < 0.01). The out-degree distribution is consistent with
neither a power law nor a log-normal distribution (p < 0.01).
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The EstimNetDirected parameter settings used in the estimations are detailed in S1
Table.

Convergence tests

As in [12] we use a t-ratio check for convergence, but for larger directed networks we
weaken the criterion to conclude non-convergence if the absolute value of any
parameter’s t-ratio is greater than 0.3. If the covariance matrix computed in the
standard error estimation step is (nearly) computationally singular then that estimate is
considered non-converged, possibly due to model degeneracy.

For empirical network estimations where there are not a large number of automated
estimations to process, visual inspection of the parameter and statistic trace plots is
used as a heuristic to confirm convergence. In the case of the simulated networks where
large numbers of estimations are run, we automate the additional heuristic that
estimations with numeric overflow (“NaN” values) or “huge” (greater in magnitude
than 1010) parameter values are non-converged.

An additional heuristic (visual) convergence test for modeling empirical networks is
to plot various network statistics of the observed network on the same plot as the
distribution of these statistics in the EE algorithm simulated networks. This is the same
principle as the t-ratio test, but it includes statistics other than those explicitly included
in the model in order to give some indication of how well the model fits. The statistics
included are the degree distribution, reciprocity, giant component size, average local and
global clustering coefficients, triad census, geodesic distribution, and edgewise and
dyadwise shared partners (similar to goodness-of-fit plots in statnet [30–33]).

Note, however, that these plots are not goodness-of-fit plots, as the simulated
networks are not generated ab initio (e.g. from the empty network) from the estimated
parameters, but rather are the networks that have been simulated in the EE algorithm
where the starting point is the observed network. Hence the plots may be
“over-optimistic” in indicating a good model fit: however a plot clearly showing a poor
model fit definitely indicates lack of convergence or a poor model.

In addition, for every large networks it is impractical to compute some distributions
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in reasonable time (such as the edgewise and dyadwise shared partners, and the
geodesic distribution) and so these plots are excluded for very large networks. An
example of a convergence plot is shown in S1 Fig.

Results and discussion

Simulated networks

Table 2 shows the bias, RMSE, Type II error rate, and coverage in estimating the
simulated networks. It can be seen that the Type II error rate in inference is very low
on all parameters except for Arc and and A2P-TD. In the case of the Arc parameter,
this is of little concern as we do not in practice need to make a statistical inference on
this parameter, as previously noted it is analogous to an intercept and simply used to
control for network density. Fig 7 and Fig 8, plotting the point estimates and their error
bars, shed some more light on this problem. It seems the high Type II error rate for Arc
and A2P-TD is at least partly explained by the small magnitude of the true values of
these parameters. The coverage in most of these cases indicates overly conservative
error estimates (higher than the nominal 95%), and the Type II error rate is high.

Additionally, in the case of the Arc parameter especially, the parameter estimates
appear to be biased. Although the Type II error rate is very low, in the case of the
networks with binary attribute, the coverage rate is low for the Sender, Interaction, and
(to a lesser degree) Reciprocity parameters. Fig 8 shows that this appears to be because
of bias in these parameter estimates. In the case of the networks with a categorical
attribute, Fig 7 shows positive bias in the Arc parameter resulting in a high Type II
error rate despite lower than nominal coverage.

We should not be surprised by bias in the parameter estimates, as the MLE for
ERGM canonical parameters is biased precisely because it is unbiased by construction
in the mean value parameter space [61] (that is, the mean values of the statistics, not
the corresponding ERGM parameters). For this reason, van Duijn, Gile, &
Handcock [61] propose a framework for assessing estimators in which bias is compared
in the mean value parameter space, by generating large numbers of simulated networks
from the estimated parameter values, and comparing them to the statistics of the
original simulated networks. However for large directed networks this procedure is
impractical due to the time it takes to simulate each set of networks (the very reason
the EE algorithm is so fast is that it avoids doing this). In addition, as the purpose of
ERGM parameter estimation is usually to make statistical inferences from the estimated
parameters, it is useful to measure the inferential error in this procedure.

Table 3 shows the coverage and Type I error rates estimated from simulated
networks with zero effects. Note that in this case, coverage and Type I error rate are
effectively the same thing (as percentages, coverage is 100− α where α is the Type I
error rate) as the known true value of the parameter is zero by design. This table shows
that the Type I error rate in all but two cases is within the nominal 5% range. In one
case, Matching Reciprocity for the categorical networks, the point estimate of the Type I
error rate is 9% but the 95% confidence interval extends down to 5%. However the other
case, Matching for categorical networks, the point estimate of the Type I error rate is
11% and the confidence interval extends down to only 6%, so for this particular case the
Type I error rate is too high. We note that the coverage for this zero parameter is only
89%, so it would appear that our method is potentially subject to inferential error in
such cases where Matching Reciprocity is included in the model but the corresponding
baseline Matching parameter is not. We would recommend not using such a model, and
always including the corresponding baseline parameters, as is standard practice in
ERGM model building, where configurations are nested within one another [1, Ch. 3].
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Table 2. Results from estimation of simulated networks using EstimNetDirected estimating Type II error
rate.

N Attributes Effect Bias RMSE estim. lower upper in C.I. (%) NC NR

2000 Categorical A2P-TD -0.0285 0.0411 40 31 50 100 100 32.00
2000 Categorical AinS 0.0060 0.1298 0 0 4 100 100 32.00
2000 Categorical AKT-T 0.0157 0.0208 0 0 4 100 100 32.00
2000 Categorical AoutS -0.4346 0.4506 0 0 4 98 100 32.00
2000 Categorical Arc 0.5514 0.6120 100 96 100 85 100 32.00
2000 Categorical Matching -0.0058 0.0396 0 0 4 100 100 32.00
2000 Categorical MatchingReciprocity 0.0930 0.2901 0 0 4 100 100 32.00
2000 Categorical Reciprocity -0.0636 0.2745 0 0 4 100 100 32.00
2000 Binary A2P-TD -0.0243 0.0439 69 59 77 100 100 31.98
2000 Binary AinS -0.0109 0.0974 0 0 4 100 100 31.98
2000 Binary AKT-T 0.0316 0.1335 3 1 8 90 100 31.98
2000 Binary AoutS -0.2228 0.2395 0 0 4 100 100 31.98
2000 Binary Arc 0.2118 0.3077 67 57 75 98 100 31.98
2000 Binary Interaction -0.1350 0.1915 0 0 4 50 100 31.98
2000 Binary Receiver -0.0348 0.1083 0 0 4 97 100 31.98
2000 Binary Reciprocity -0.1359 0.1638 0 0 4 63 100 31.98
2000 Binary Sender -0.2470 0.2617 0 0 4 16 100 31.98

The “estim.”, “lower”, and “upper” columns show the point estimate and lower and upper 95% confidence interval (C.I.),
respectively, of the Type II error rate (false negative rate). This C.I. is computed as the Wilson score interval [62]. The “in
C.I. (%)” column is the coverage rate for the nominal 95% confidence interval of the EstimNetDirected point and standard
error estimates. Results are over 100 networks, each of which has 32 parallel estimation runs. NC is the number of networks
for which a converged estimate was found (out of 100). NR is the mean number of runs that converged (out of 32). Runs that
did not converge are not included in the estimates.
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Fig 7. EstimNetDirected parameter estimates for 2000 node networks with
categorical attribute. The error bars show the nominal 95% confidence interval. The
horizontal line shows the true value of the parameter, and each plot is also annotated
with the mean bias, root mean square error (RMSE), the percentage of samples for
which the true value is inside the confidence interval, the coverage (% in CI), and the
Type II error rate (False Negative Rate, FNR). NC is the number of networks (of the
total 100) for which a converged estimate was found, each of which is shown on the plot.
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Also note that for two of the sets of simulated networks, the binary node attribute
networks with the Interaction or Reciprocity effects set to zero, the number of runs and
networks for which estimations converged is very low (less than half). This is not
problematic, as these tests, where an effect not present in the network is included in the
model, could be considered instances of model mis-specification, so the possibility of
estimations not converging is to be expected. Note that for estimations shown in
Table 2, where the model is exactly correct (it is the same model that generated the
networks), converged estimates are obtained for all the simulated networks.

Empirical network example

Table 4 shows a model estimated for the Pokec online social network with the 20 highest
degree hubs removed (N = 1 632 783). This estimation took approximately 22 hours on
cluster nodes with Intel Xeon E5-2650 v3 2.30GHz processors using two parallel tasks
with 512 GB RAM each.

Regarding structural features, these results confirm centralization on both in- and
out-degree in the Pokec online social network. There is a significantly positive
reciprocity effect: friendships are more likely to be reciprocated than not, conditional on
the other features in the model. There is also positive activity closure: people who send
friendship ties to the same people also tend to be friends. There is also positive path
(transitive) closure, in combination with negative two-paths: friends of friends tend also
to be friends. This can also be interpreted in terms of the “forbidden triad” [63], in
which an open two-path (of what we assume to be “strong” ties as they represent
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Fig 8. EstimNetDirected parameter estimates for 2000 node networks with
binary attribute. The error bars show the nominal 95% confidence interval. The
horizontal line shows the true value of the parameter, and each plot is also annotated
with the mean bias, root mean square error (RMSE), the percentage of samples for
which the true value is inside the confidence interval, the coverage (% in CI), and the
Type II error rate (False Negative Rate, FNR). NC is the number of networks (of the
total 100) for which a converged estimate was found, each of which is shown on the plot.
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friendship) is not closed transitively. Such a triad is indeed less likely than by chance,
conditional on the other parameters in the model, in this network.

There is homophily on both region and age: people who live in the same region are
more likely to be friends than those who live in different regions, and people of similar
ages are more likely to be friends. Interestingly, there is significant heterophily on the
gender attribute: people of different genders are more likely to be friends on this online
social network.

The convergence test plot for the Pokec online social network estimation is shown in
S1 Fig.

The algorithm parameters used for this estimation are shown in S1 Table in the
column for the Pokec network. As a general guideline, we recommend using these
parameters, with the exception of EEsteps. It may be useful to start with the default
value of 1 000 (or even smaller) for this parameter, to relatively quickly obtain initial
results and check the trace plots for any obvious failure to converge, such as a
parameter value clearly diverging (due to a bad model for instance). If there are no
obvious problems then the EEsteps parameter can be increased if the t-ratios or trace
plots (as described in the section “Convergence tests”) indicate that the estimation has
not yet converged.
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Table 3. Results from estimation of full network using EstimNetDirected estimating Type I error rate.

N Attributes Effect Bias RMSE estim. lower upper in C.I. (%) NC NR

2000 Categorical A2P-TD -0.0217 0.0657 1 0 5 99 100 31.94
2000 Categorical AinS -0.0017 0.0648 1 0 5 99 100 32.00
2000 Categorical AKT-T -0.0154 0.0837 0 0 4 100 100 32.00
2000 Categorical AoutS -0.0129 0.0706 1 0 5 99 100 32.00
2000 Categorical Matching 0.0239 0.0440 11 6 19 89 100 32.00
2000 Categorical MatchingReciprocity 0.1246 0.1981 9 5 16 91 100 32.00
2000 Categorical Reciprocity 0.4809 0.5493 2 1 7 98 100 30.86
2000 Binary A2P-TD -0.0143 0.0198 2 1 7 98 100 32.00
2000 Binary AinS -0.1234 0.1830 1 0 5 99 100 32.00
2000 Binary AKT-T -0.2473 0.5563 1 0 5 99 100 29.32
2000 Binary AoutS -0.0011 0.0954 0 0 4 100 100 32.00
2000 Binary Interaction -0.7966 3.0590 4 1 15 96 46 7.02
2000 Binary Receiver 0.0313 0.1577 5 2 11 95 100 31.33
2000 Binary Reciprocity -0.3127 1.2360 0 0 14 100 24 6.96
2000 Binary Sender 0.0244 0.1252 2 1 7 98 100 30.73

The “estim.”, “lower”, and “upper” columns show the point estimate and lower and upper 95% confidence interval (C.I.),
respectively, of the Type I error rate (false positive rate). This C.I. is computed as the Wilson score interval [62]. The “in C.I.
(%)” column is the coverage rate for the nominal 95% confidence interval of the EstimNetDirected point and standard error
estimates. Results are over 100 networks, each of which has 32 parallel estimation runs. NC is the number of networks for
which a converged estimate was found (out of 100). NR is the mean number of runs that converged (out of 32). Runs that did
not converge are not included in the estimates.

Table 4. Parameter estimates for the Pokec online social network with
hubs removed.

Effect Estimate Std. error

Arc -20.642 0.381 *
Isolates -7.711 2.269 *
Reciprocity 33.473 3.834 *
Popularity spread (AinS) 1.720 0.128 *
Activity spread (AoutS) 1.900 0.280 *
Two-path (A2P-T) -0.014 0.003 *
Shared popularity (A2P-D) 0.021 0.003 *
Shared activity (A2P-U) 0.022 0.003 *
Path closure (AKT-T) 2.151 0.411 *
Popularity closure (AKT-D) 2.270 0.439 *
Activity closure (AKT-U) 2.270 0.407 *
Sender age 0.021 0.014
Receiver age 0.022 0.013
Diff age -0.099 0.012 *
Matching gender -1.164 0.287 *
Matching region 3.172 0.543 *

Asterisks indicate statistical significance at p < 0.05.

Conclusion

We have demonstrated an implementation of the EE algorithm for ERGM parameter
estimation capable of estimating models for social networks with over one million nodes,
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which is far larger than previously possible (without using network sampling). However
there are several limitations and scope for future work. The implementation described
here requires tuning some algorithm parameters (S1 Table), however a simplified version
of the EE algorithm requires fewer parameters [25] and may make it easier to obtain
converged models.

Although the use of hash tables to efficiently store the sparse two-path matrices
allows scalability to networks of millions of nodes, it depends on sufficient sparsity of
these matrices, and not all empirical networks of interest satisfy this requirement. For
example the physician referral network described by An et al. [64], although having
approximately one million nodes, making it smaller than the Pokec online social
network, does not have a sufficiently sparse two-path table for our implementation to
work even with the largest memory cluster node available to us (512 GB memory).
Further work is required to find a means of alleviating this problem.

Although the convergence heuristic plots we have described resemble a
goodness-of-fit test superficially, they are not actually goodness-of-fit tests. The
difficulty of generating (simulating) numbers of very large networks from estimated
ERGM parameters for conventional goodness-of-fit tests for ERGM makes these
methods impractical for such large networks. One possibility to investigate is to
simulate snowball samples from the estimated parameters and compare the distribution
of network statistics of these simulated samples to the corresponding distributions of
network statistics in snowball sample taken from the observed network. More generally,
the idea of such goodness-of-fit tests for extremely large networks may have to be
fundamentally re-examined, in light of the difficulty of any simple model adequately
fitting such a large network — and the homogeneity assumption that the same local
processes operate across such a large network may also no longer be realistic.

In addition, the ERGM MLE bias in canonical parameters may need to be addressed
by some bias correction technique, as was originally explored for maximum
pseudolikelihood estimation [61], but does not appear to have been successfully pursued
since for other, now preferred (not least due to the results of [61]), estimation methods.

An important next step is the strengthening of the theoretical basis for the the EE
algorithm. Existing commonly used methods for ERGM parameter estimation are based
on well-known algorithms with well developed theoretical foundations such as stochastic
approximation [5] using the Robbins–Monro algorithm [65] or MCMCMLE [6] based on
the Geyer–Thompson method [66] with increasingly sophisticated variants [9]. In
contrast, there are no theoretical guarantees behind the EE algorithm [12], and although
contrastive divergence [39,40] and persistent contrastive divergence [36,37] are becoming
widely used, more theoretical work is required to understand their convergence
properties in general, and for ERGM parameter estimation in particular [67]. Regarding
the EE algorithm, the experiments with simulated networks described in this paper give
encouragement for the validity and usefulness of this approach, but further work to
understand its convergence properties is a potentially fruitful area of research [25].

Supporting information

S1 Appendix. Algorithm descriptions. Pseudocode for the EE algorithm is
detailed below. This algorithm uses an ERGM sampler described immediately following
it, the IFD sampler [11], however other ERGM samplers may be used, and in particular
the “basic” sampler [5, 42], the pseudocode for which is detailed in [12, Supplementary
Information] was used for the simulated network estimations.

In the algorithm descriptions, vectors such as θ, z, and dz have dimension equal to
the number of model parameters, s. All vector operations are elementwise, e.g. dz2 is
the vector consisting of the square of each element of dz and D � dz is the elementwise
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(Hadamard) product of D and dz (a vector of the same dimension, s, as both D and
dz).

Precondition: xobs is the observed graph, θ0 is the initial parameter estimate, D0 is
the initial derivative estimate.

Postcondition: Returned value θt is the estimated parameter value.

1: function EE(xobs,θ0,D0)
2: KA ← 10−4 . Multiplier of D to get step size multiplier
3: c1 ← 10−2 . Minimum magnitude of |θ̄| (small positive constant)
4: c2 ← 10−4 . Multiplier of |θ̄|/sd (θ) to limit θ variance
5: KIFD ← 0.1 . IFD sampler auxiliary parameter step size multiplier
6: V ← 0 . IFD sampler auxiliary parameter
7: Mouter ← 1000 . Steps of Algorithm EE
8: Minner ← 100 . Inner iterations of Algorithm EE
9: m ← 1000 . Number of sampler iterations

10: t ← 0
11: x ← xobs
12: D ← D0

13: dz ← 0 . Vector of accumulated change statistics
14: for i← 1 to Mouter do
15: for j ← 1 to Minner do
16: (dzAdd,dzDel) ← Sampler(x,θt,m,KIFD, V )
17: dz ← dz + dzAdd− dzDel . Accumulate accepted change statistics
18: θt+1 ← θt − sign(dz)�KAD � dz2
19: t ← t+ 1
20: end for

21: D ← D �
[
c2

max(|θt−Minner≤k<t|,c1)
sd(θt−Minner≤k<t)

] 1
2

22: end for
23: return θt
24: end function

The algorithm to sample from ERGM distributions with Metropolis–Hastings using
the IFD sampler [11] is described below. Note that the Arc parameter θL must not be
included in the model when using the IFD sampler, instead it is calculated from the
IFD sampler auxiliary parameter V as

θL = V − log

(
Lmax − Lobs

Lobs + 1

)
(20)

where Lmax = N(N − 1) is the number of possible arcs in a directed graph and Lobs is
the number of arcs in the observed graph xobs.

Precondition: x is a directed graph, θ is vector of parameters, m is number of
sampler iterations, KIFD is the multiplier for the auxiliary parameter step size, e.g.
KIFD = 0.1. Initially set IFD auxiliary parameter V = 0.

Postcondition: Return value (dzAdd,dzDel) accumulated change statistics of
accepted (add, delete) moves. The graph x is updated by the accepted moves and
the IFD auxiliary parameter V is updated.

1: function Sampler(x,θ,m,KIFD, V )
2: isDelete ← False
3: Nadd ← 0 . number of add moves
4: Ndel ← 0 . number of delete moves
5: dzAdd ← 0
6: dzDel ← 0
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7: for w ← 1 to m do
8: if isDelete then . Delete move
9: Ndel ← Ndel + 1

10: Choose two nodes i, j (i 6= j) with arc i→ j uniformly at random
11: else . Add move
12: Nadd ← Nadd + 1
13: Choose two nodes i, j (i 6= j) with no arc i→ j uniformly at random
14: end if
15: Compute change statistic dzA for adding arc i→ j (if ¬ isDelete) or deleting

arc i→ j (if isDelete) for each statistic A
16: Vs ← −1 if isDelete else 1
17: α ← min {1, exp (

∑
A [θAdzA] + VsV )} . proposal acceptance probability

18: if Unif(0, 1) < α then . Accept change with probability α
19: if isDelete then
20: dzDel ← dzDel− dz
21: xij ← 0
22: else
23: dzAdd ← dzAdd+ dz
24: xij ← 1
25: end if
26: isDelete ← ¬ isDelete
27: end if
28: end for
29: Vstep ← (Ndel−Nadd)

2

(Ndel+Nadd)2

30: if Ndel −Nadd > 0 then
31: V ← V −KIFDVstep
32: else
33: V ← V +KIFDVstep
34: end if
35: if |Ndel−Nadd|

Ndel+Nadd
> 0.8 then

36: Warn that KIFD might be too small.
37: end if
38: return (dzAdd,dzDel)
39: end function

S1 Table. EstimNetDirected parameter settings.
Parameter name Pseudocode Simulated Pokec

ACA S K1A 0.1 0.1
ACA EE KA 10−9 10−7

compC c2 0.01 0.01
samplerSteps m 1000 1000
Ssteps M1 50 1000
EEsteps Mouter 500 1500
EinnerSteps Minner 100 100
useIFDsampler — False True
ifd K KIFD — 0.1

“Pseudocode” is the notation used for the parameter in S1 Appendix or [12, Supplementary Information]. “Simulated” is the
value used for estimating the simulated networks and “Pokec” is the value used in estimating the model for the Pokec online
social network.

S1 Fig. Convergence test plot for Pokec (hubs removed) estimation. The
observed network statistics are plotted in red with the statistics of the EE algorithm
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simulated networks on the same plot as black boxplots, or blue on histogram plots. Note
that on the triad census plots, triads 003, 012, and 102 are omitted as the extremely
large counts cause numeric overflow in the igraph library [50] for a network this large.

0.00

0.04

0.08

0.12

0 200 400 600 800
in−degree

fr
ac

tio
n 

of
 n

od
es

0.000

0.005

0.010

0.015

0.020

0 250 500 750 1000
in−degree

de
ns

ity

obs

sim

0.0

0.2

0.4

0 2 4 6
log in−degree

de
ns

ity

obs

sim

0.00

0.05

0.10

0 200 400 600 800 1000
out−degree

fr
ac

tio
n 

of
 n

od
es

0.000

0.005

0.010

0.015

0 300 600 900
out−degree

de
ns

ity

obs

sim

0.0

0.1

0.2

0.3

0.4

0 2 4 6
log out−degree

de
ns

ity

obs

sim

●

0.00

0.25

0.50

0.75

1.00

reciprocity

fr
ac

tio
n 

of
 a

rc
s

●

0.00

0.25

0.50

0.75

1.00

giant component

fr
ac

tio
n 

of
 n

od
es

●
●

0.00

0.25

0.50

0.75

1.00

average local globalcl
us

te
rin

g 
co

ef
fic

ie
nt

0e+00
1e−10
2e−10
3e−10
4e−10

02
1D

02
1U

02
1C

11
1D

11
1U

03
0T

03
0C 20

1
12

0D
12

0U
12

0C 21
0

30
0

Triad census

fr
ac

tio
n 

of
 tr

ia
ds

1e−12

1e−11

1e−10

02
1D

02
1U

02
1C

11
1D

11
1U

03
0T

03
0C 20

1
12

0D
12

0U
12

0C 21
0

30
0

Triad census
fr

ac
. t

ria
ds

 (
lo

g)

Acknowledgments

We gratefully acknowledge the support of Swiss National Science Foundation NRP 75
Big Data project 167326 “The Global Structure of Knowledge Networks: Data, Models
and Empirical Results”. We thank Dr Pavel Krivitsky, Prof. Dean Lusher,
Prof. Antonietta Mira, and Prof. Ernst Wit for useful discussions.

References

1. Lusher D, Koskinen J, Robins G, editors. Exponential random graph models for
social networks. Structural Analysis in the Social Sciences. New York: Cambridge
University Press; 2013.

2. Amati V, Lomi A, Mira A. Social network modeling. Annu Rev Stat Appl.
2018;5:343–369.

3. Corander J, Dahmström K, Dahmström P. Maximum likelihood estimation for
Markov graphs. Stockholm University, Department of Statistics; 1998. 8.

4. Corander J, Dahmström K, Dahmström P. Maximum likelihood estimation for
exponential random graph models. In: Hagberg J, editor. Contributions to social
network analysis, information theory, and other topics in statistics; a Festschrift
in honour of Ove Frank. Department of Statistics, University of Stockholm; 2002.
p. 1–17.

5. Snijders TAB. Markov chain Monte Carlo estimation of exponential random
graph models. J Soc Struct. 2002;3(2):1–40.

November 22, 2019 20/24



6. Hunter DR, Handcock MS. Inference in curved exponential family models for
networks. J Comput Graph Stat. 2006;15(3):565–583.

7. Robins G, Snijders T, Wang P, Handcock M, Pattison P. Recent developments in
exponential random graph (p∗) models for social networks. Soc Networks.
2007;29(2):192–215.

8. Caimo A, Friel N. Bayesian inference for exponential random graph models. Soc
Networks. 2011;33:41–55.

9. Hummel RM, Hunter DR, Handcock MS. Improving simulation-based algorithms
for fitting ERGMs. J Comput Graph Stat. 2012;21(4):920–939.

10. Hunter DR, Krivitsky PN, Schweinberger M. Computational statistical methods
for social network models. J Comput Graph Stat. 2012;21(4):856–882.

11. Byshkin M, Stivala A, Mira A, Krause R, Robins G, Lomi A. Auxiliary parameter
MCMC for exponential random graph models. J Stat Phys. 2016;165(4):740–754.

12. Byshkin M, Stivala A, Mira A, Robins G, Lomi A. Fast maximum likelihood
estimation via Equilibrium Expectation for large network data. Sci Rep.
2018;8:11509.

13. Robins G, Pattison P, Wang P. Closure, connectivity and degree distributions:
Exponential random graph (p∗) models for directed social networks. Soc
Networks. 2009;31(2):105–117.

14. Coleman JS. Relational analysis: the study of social organizations with survey
methods. Hum Organ. 1958;17(4):28–36.

15. Goodman LA. Snowball sampling. Ann Math Stat. 1961;32:148–170.

16. Goodman LA. Comment: On respondent-driven sampling and snowball sampling
in hard-to-reach populations and snowball sampling not in hard-to-reach
populations. Sociol Methodol. 2011;41(1):347–353.

17. Heckathorn DD. Comment: Snowball versus respondent-driven sampling. Sociol
Methodol. 2011;41(1):355–366.

18. Handcock MS, Gile KJ. Comment: On the concept of snowball sampling. Sociol
Methodol. 2011;41(1):367–371.

19. Handcock MS, Gile KJ. Modeling social networks from sampled data. Ann Appl
Stat. 2010;4(1):5–25.

20. Stivala AD, Koskinen JH, Rolls DA, Wang P, Robins GL. Snowball sampling for
estimating exponential random graph models for large networks. Soc Networks.
2016;47:167–188.

21. Pattison PE, Robins GL, Snijders TAB, Wang P. Conditional estimation of
exponential random graph models from snowball sampling designs. J Math
Psychol. 2013;57(6):284–296.

22. Snijders TAB, Baerveldt C. A multilevel network study of the effects of
delinquent behavior on friendship evolution. J Math Sociol. 2003;27(2–3):123–151.

23. Efron B. Better bootstrap confidence intervals. J Am Stat Assoc.
1987;82(397):171–185.

November 22, 2019 21/24



24. Hunter DR, Goodreau SM, Handcock MS. Goodness of fit of social network
models. J Am Stat Assoc. 2008;103(481):248–258.

25. Borisenko A, Byshkin M, Lomi A. A simple algorithm for scalable Monte Carlo
inference; 2019. Preprint. Available from: arXiv:1901.00533v3. Cited 17 April
2019.

26. Thiemichen S, Kauermann G. Stable exponential random graph models with
non-parametric components for large dense networks. Soc Networks.
2017;49:67–80.

27. Babkin S, Schweinberger M. Massive-scale estimation of exponential-family
random graph models with local dependence; 2017. Preprint. Available from:
arXiv:1703.09301v1. Cited 17 April 2019.

28. Schweinberger M, Krivitsky PN, Butts CT, Stewart J. Exponential-family models
of random graphs: Inference in finite-, super-, and infinite-population scenarios;
2019. Preprint. Available from: arXiv:1707.04800v4. Cited 15 October 2019.

29. Snijders TAB, Pattison PE, Robins GL, Handcock MS. New specifications for
exponential random graph models. Sociol Methodol. 2006;36(1):99–153.

30. Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M. statnet:
Software tools for the representation, visualization, analysis and simulation of
network data. J Stat Softw. 2008;24(1):1–11.

31. Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M. ergm: A package
to fit, simulate and diagnose exponential-family models for networks. J Stat
Softw. 2008;24(3):1–29.

32. Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN,
Bender-deMoll S, et al.. statnet: Software tools for the statistical analysis of
network data; 2016. Available from: CRAN.R-project.org/package=statnet.

33. Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Morris M.
ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks; 2016.
Available from: http://CRAN.R-project.org/package=ergm.

34. Wang P. Exponential random graph models for affiliation networks [PhD thesis].
The University of Melbourne. Melbourne, Australia; 2012.

35. Morris M, Handcock M, Hunter D. Specification of exponential-family random
graph models: Terms and computational aspects. J Stat Softw. 2008;24(4):1–24.
doi:10.18637/jss.v024.i04.

36. Younes L. Estimation and annealing for Gibbsian fields. Ann Inst Henri Poincaré
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