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Abstract

The autologistic actor attribute model (ALAAM) is a model for social influence, derived from the more widely
known exponential-family random graph model (ERGM). ALAAMs can be used to estimate parameters corre-
sponding to multiple forms of social contagion associated with network structure and actor covariates. This work
introduces ALAAMEE, open-source Python software for estimation, simulation, and goodness-of-fit testing for
ALAAM models. ALAAMEE implements both the stochastic approximation and equilibrium expectation (EE)
algorithms for ALAAM parameter estimation, including estimation from snowball sampled network data. It im-
plements data structures and statistics for undirected, directed, and bipartite networks. We use a simulation study
to assess the accuracy of the EE algorithm for ALAAM parameter estimation and statistical inference, and demon-
strate the use of ALAAMEE with empirical examples using both small (fewer than 100 nodes) and large (more
than 10 000 nodes) networks.

Keywords— autologistic actor attribute model, ALAAM, exponential-family random graph model, ERGM, social influence,
social networks, Python software

1 Introduction

The autologistic actor attribute model (ALAAM) is a model for social influence or social contagion, the process
whereby actors in a social network adopt the attitudes, opinions, or beliefs of their network neighbours. This pro-
cess may also be known as diffusion, or, in economics, peer effects (Bramoullé et al., 2020). Originally introduced
by Robins et al. (2001b), the ALAAM is a variant of exponential-family random graph model (ERGM) for social
networks (Robins et al., 2001a; Daraganova, 2009; Daraganova and Robins, 2013; Lusher et al., 2013; Amati et al.,
2018; Koskinen, 2020, 2023). As such, the ALAAM is a cross-sectional model: given a single observation of the
social network and the attribute (assumed to be binary in the ALAAM) which is hypothesized to be socially conta-
gious, the model is used to estimate parameters relating to this contagion. In the ALAAM, the network is assumed
to be fixed (exogenous), and the binary outcome variable is modeled (the variable is endogenous). This in contrast
to the ERGM, in which the tie variables are modeled (tie formation is an endogenous process), based on fixed actor
attributes. Note that the outcome (binary) attribute of an actor in the ALAAM is allowed to depend on its values for
other actors connected to it in the social network, hence the “autologistic” in the name.

Unlike the more widely known network autocorrelation model (Ord, 1975; Cliff and Ord, 1981; Doreian, 1981;
Anselin, 1990; Friedkin, 1990; Leenders, 2002), in which social contagion is associated with a single parameter, the
ALAAM can be used to estimate parameters corresponding to multiple forms of social contagion associated with more
complex relationships between network structure, the outcome variable, and other actor attributes. This is discussed
further in Stivala et al. (2020b), and the dependency assumptions and the types of terms these allow in the ALAAM
are discussed in Daraganova (2009); Koskinen and Daraganova (2022).

ALAAMs can also be estimated for network data obtained via snowball sampling (Daraganova, 2009; Daraganova
and Robins, 2013; Kashima et al., 2013; Stivala et al., 2020b). For a recent introduction and review of ALAAM usage,
see Parker et al. (2022), and for a comprehensive survey of ALAAM applications, Stivala (2023).
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The most commonly used software for ALAAM modeling is the IPNet Windows application (Wang et al., 2009),
or its successor, the Windows application MPNet (Wang et al., 2014, 2022), which allows for ERGM and ALAAM
modeling with undirected, directed, bipartite, and multilevel networks. Note that the widely-used R package statnet
(Handcock et al., 2008; Hunter et al., 2008; Hummel et al., 2012; Handcock et al., 2022; Krivitsky et al., 2023) for
ERGM modeling, does not implement ALAAM,1 although the exponential-family random network model (ERNM),
a generalization of the ERGM and ALAAM, which models both social selection and social influence simultane-
ously (Fellows and Handcock, 2012, 2013; Wang et al., 2024) is implemented using statnet. The only other publicly
available code for ALAAM modeling is the R code for estimating Bayesian ALAAMs described by Koskinen and
Daraganova (2022).

These existing implementations are limited, both by the algorithms implemented and details of their implementa-
tion, in the size of the networks on which they can practically be used. Therefore, in order to be able use ALAAMs
with large (thousands of nodes or more) networks, such as, for example, those that can be collected from online social
network data, an alternative is required.

This paper describes one such alternative, ALAAMEE, open-source Python code for ALAAM parameter estima-
tion, simulation, and goodness-of-fit testing. The ALAAMEE software implements the same stochastic approximation
algorithm for ALAAM parameter estimation as IPNet and MPNet do (Snijders, 2002), which is practical for networks
of the order of thousands, or in some cases tens of thousands, of nodes in size or smaller. For larger networks, it also
implements the “equilibrium expectation” (EE) algorithm (Byshkin et al., 2016, 2018; Borisenko et al., 2020), which
has previously been used for estimating ERGM parameters for very large networks (Byshkin et al., 2018; Chakraborty
et al., 2020; Stivala et al., 2019, 2020a; Stivala and Lomi, 2022)

2 The autologistic actor attribute model (ALAAM)

The ALAAM, modeling the probability of attribute Y (taking the form of a binary vector y) given the network X (a
matrix of binary tie variables) can be expressed as (Daraganova and Robins, 2013):

Pr(Y = y|X = x) =
1

κ(θI)
exp

(
∑

I
θIzI(y,x,w)

)
(1)

where θI is the parameter corresponding to the network-attribute statistic zI , in which the “configuration” I is defined
by a combination of dependent (outcome) attribute variables y, network variables x, and actor covariates w, and κ(θI)
is a normalizing quantity which ensures a proper probability distribution.

Just as for ERGM, parameter estimation for ALAAM is a computationally intractable problem, and so the max-
imum likelihood estimate (MLE) of the ALAAM parameters is found using Markov chain Monte Carlo (MCMC)
methods (see Hunter et al. (2012) for an overview in the ERGM context).

The sign and significance of the ALAAM parameters θI support inferences about the statistical relationship be-
tween the corresponding configurations zI(y,x,w) and the outcome attribute binary vector y, each conditional on all
the other effects included in the model.

For example, consider the frequently used contagion effect, using an undirected network for simplicity. The
statistic for contagion is the number of pairs of directly connected nodes, i and j (i ̸= j) where xi j = 1, in which
both nodes have the outcome attribute yi = y j = 1 (see Table 1). If the contagion parameter is found to be positive
and significant, this means the contagion configuration (a directly connected pair of nodes both with the outcome
attribute) occurs more frequently than expected by chance, given all the other effects included in the model. So there
is a statistically significant correlation between a pair of nodes being directly connected, and both having the outcome
attribute (conditional on the other effects in the model).

The distinction between the ERGM and the ALAAM arises from the assumptions and hypotheses behind the
model. In the ERGM, modeling tie formation, we might hypothesize that having the same attribute value affects
(increases, for homophily) the probability of a tie between two nodes, and test for this. In the ALAAM, modeling

1Although, as noted in Barnes et al. (2020), an ALAAM can be considered as an ERGM for a two-mode network, with the N nodes of one
mode representing the actors, and a tie from an actor to the single node of the other mode representing that actor having the outcome attribute,
with the observed N node social network as a fixed covariate. And hence this could be implemented as a statnet ergm model, but whether or
not it is practical is another question. This conception of an ALAAM could also be a way of implementing a multivariate ALAAM, by having
more than one “outcome” node.
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Table 1: Configurations used in ALAAMs for undirected networks.

Name Illustration Description
Density Baseline attribute density (incidence). Also used with directed networks.

Activity Tendency for actor with the attribute to have ties.

Contagion Tendency for actor with the attribute to be tied to an actor also with the at-
tribute.

Two-star Tendency of actor with attribute to have additional ties over Activity.

GWActivity

Geometrically weighted activity, described in Stivala (2023). This is used
to account for the degree distribution of nodes with the outcome attribute,
avoiding problems of near-degeneracy that can occur when using the Activity
configuration.

Alter-2Star1 Partner activity two-path; tendency of an actor with the attribute to have a tie
to another actor with a tie to a third actor.

Alter-2Star2
Also known as indirect partner attribute. Structural equivalence of actors with
the attribute (two-path equivalence); tendency of actors with the attribute to
have the same network partner in common.

Partner-Activity Also known as partner attribute activity. Tendency of the attribute to be
present on two directly connected nodes in a two-path.

Partner-Resource Also known as partner-partner attribute; tendency of the attribute to be present
in all three nodes in a two-path.

T1 Actor triangle; tendency of actor with attribute to be involved in a triangle.

T2 Partner attribute triangle; tendency of attribute to be present in actors involved
in triangles with another node that also has the attribute.

T3 Partner-partner attribute triangle; tendency of attribute to be present in all
three nodes in a triangle.

attribute_oOc

Covariate effect for continuous covariate attribute. The “oOc” notation is
from IPNet (Wang et al., 2009), and we may omit this when there is no am-
biguity, e.g. “Age_oOc” may also be written simply as “Age”. Also used in
directed and bipartite networks.

attribute_o_Oc

Covariate effect for continuous covariate attribute on partner node (outcome
attribute related to continuous attribute on partner node). The “o_Oc” no-
tation is from IPNet (Wang et al., 2009), and we may instead write this as
“partner attribute”.

attribute_oOb

Covariate effect for binary covariate attribute. The “oOb” notation is from
IPNet (Wang et al., 2009), and we may omit this when there is no ambiguity,
e.g. “Binary_oOb” may also be written simply as “Binary”. Also used in
directed and bipartite networks.

Legend:

Node with outcome attribute

Node irrespective of outcome attribute
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Table 2: Configurations used in ALAAMs for directed networks.

Name Illustration Description

Sender Tendency of actors with the attribute to have outgoing ties (activity).

Receiver Tendency of actors with the attribute to have incoming ties (popularity).

Contagion Tendency of the attribute to be present in both actors connected by directed
tie.

Reciprocity Tendency of the attribute to be present in an actor connected to another by a
reciprocated (mutual) tie.

Contagion reciprocity Also known as mutual contagion. Tendency of the attribute to be present in
both actors connected by a reciprocated tie.

Ego in-two-star Tendency of the attribute to be present in an actor with additional incoming
ties over Receiver.

Ego out-two-star Tendency of the attribute to be present in an actor with additional outgoing
ties over Sender.

Mixed-two-star Tendency of the attribute to be present in an actor in the broker position be-
tween two other nodes (local brokerage).

Mixed-two-star source Tendency of the attribute to be present in an actor in the source position in
local brokerage.

Mixed-two-star sink Tendency of the attribute to be present in an actor in the sink position in local
brokerage.

Transitive triangle T1 Tendency of the attribute to be present in an actor in a transitive triangle, the
broker position in Mixed-two-star bypassed by a transitive tie.

Transitive triangle T3 Contagion clustering: tendency of the attribute to be present in all three actors
in a transitive triangle.

Cyclic triangle C1 Tendency of the attribute to be present in an actor in a cyclic triangle.

Cyclic triangle C3 Contagion cycle: tendency of the attribute to be present in all three actors in
a cyclic triangle.
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the outcome attribute, we might hypothesize that having a network tie affects (increases, for contagion) the proba-
bility that both nodes will have the outcome attribute. Distinguishing homophily and contagion in an observational
network study is in general a difficult problem (Shalizi and Thomas, 2011), and ALAAM parameters indicate only
(auto-)correlation, not causation.

Once parameters for an ALAAM model of an observed network and outcome binary attribute have been estimated,
these can be used to simulate, again using MCMC, a set of outcome binary vectors from the model. These simulated
outcomes can be used for goodness-of-fit testing and model evaluation. For further explanation and examples, see
Parker et al. (2022).

3 Implementation

ALAAMEE is implemented in Python 3, and uses the NumPy (Harris et al., 2020) package for array data types and
linear algebra. The Python code does not require any other packages, simply using a “dictionary of dictionaries”
data structure to implement graphs. Just as described in Bianchi et al. (2022), this allows simple and efficient graph
construction and implementation of the graph operations required, such as testing for the existence of an edge or arc,
and iterating over the neighbours of a node.

ALAAM parameters are usually estimated by stochastic approximation with the Robbins–Monro algorithm (Rob-
bins and Monro, 1951; Snijders, 2002). This is the method used in MPNet, and is also implemented in ALAAMEE.
For the stochastic approximation algorithm, all stages of the estimation, including point estimation, estimation of
standard errors from the Fisher information matrix (Snijders, 2002), and simulation-based goodness-of-fit testing, are
implemented in Python.

For larger networks, on the order of tens of thousands of nodes or more, this method may no longer be practical.
For such networks, the EE algorithm can be used, and ALAAMEE also implements this algorithm. The EE algorithm
works differently (Stivala et al., 2020a). In this algorithm, a number of estimation processes (each of which is a
separate Python task) are run independently. Because these runs are independent, they can be run in parallel to
minimize the elapsed time taken.

From the results of these multiple estimation runs, a point estimate and estimated standard error are computed
using an R script that uses the mcmcse R package (Flegal et al., 2021) to estimate the Fisher information matrix
and the asymptotic covariance matrix for the MCMC standard error with the multivariate batch means method (Dai
and Jones, 2017; Flegal and Jones, 2010; Jones et al., 2006; Vats et al., 2018, 2019). The overall estimate and its
estimated standard error are then computed from these multiple independent runs as the inverse variance weighted
average (Hartung et al., 2008, Ch. 4).

Scripts are provided to run the parallel estimations using either GNU Parallel (Tange, 2018) or, for Linux compute
clusters, SLURM (Yoo et al., 2003) job arrays. Scripts for processing network data and converting it between different
formats, taking snowball samples from networks, making plots, and computing the Wilson score interval (Wilson,
1927) for the binomial proportion score interval (used to find confidence intervals for Type I and II error rates in
the simulation study described in Section 4) are written in R and use the igraph (Csárdi and Nepusz, 2006), ggplot2
(Wickham, 2016), and PropCIs (Scherer, 2018) R packages.

ALAAMEE also implements estimation (and simulation) conditional on snowball sampled network structure,
as described in Pattison et al. (2013); Stivala et al. (2016) in the context of ERGM, and in Daraganova (2009);
Daraganova and Pattison (2013); Kashima et al. (2013); Stivala et al. (2020b) for ALAAM.

3.1 Change statistics

It is a property of the ALAAM (since it is a variant of the ERGM), that the odds of a node having the outcome attribute,
conditional on the values of the outcome for the other nodes, is a function of the change in the vector of statistics
associated with switching the outcome attribute value of that node from 0 to 1. It follows that, in implementing the
MCMC process for ALAAM simulation and estimation, only these change statistics (Hunter and Handcock, 2006;
Snijders et al., 2006; Hunter et al., 2012) need be implemented. That is, rather than writing functions to count each
of the configurations in the data, we need only write functions that compute the change statistic value resulting from
changing the outcome attribute value of a given node from 0 to 1. The value of the statistics in observed data can be
computed by summing the change statistics for each element of the outcome attribute vector that is equal to 1.
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1 def changeContagionReciprocity(G, A, i):
2 """
3 change statistic for Contagion Reciprocity (mutual contagion)
4

5 *<->*
6 """
7 delta = 0
8 for u in G.outIterator(i):
9 if A[u] == 1 and G.isArc(u, i):

10 delta += 1
11 return delta

Figure 1: Example change statistic implementation: the change statistic for “contagion reciprocity” in a directed
network.

For example, consider the simplest statistic, attribute Density, sometimes instead called Incidence (Parker et al.,
2022) to avoid confusion with graph density. This statistic is simply the number of nodes with the outcome attribute.
Its corresponding change statistic is simply the constant 1, since for any node, if its outcome attribute value is switched
from 0 to 1, then that increases the Density statistic by 1.

Every change statistic in ALAAMEE is implemented as a function of the form changeStatname(G, A, i) where
G is a Graph (or Digraph or BipartiteGraph, as appropriate to the change statistic) object, A is a binary outcome
vector, and i is a node identifier. The function returns the change statistic value for switching the node outcome
attribute value A[i] from 0 to 1. It is a precondition of the change statistic functions that A[i] == 0. An example
is shown in Figure 1. Python “docstrings” are used to document the change statistic function, including an ASCII
diagram illustrating the corresponding configuration. This allows the documentation to be viewed at the interactive
Python prompt with the built-in help() function.

The code shown in Figure 1 implements the change statistic for the Contagion reciprocity statistic, also known
as mutual contagion (see Table 2). This statistic counts the number of pairs of nodes with a reciprocated (mutual)
tie between them, in which both nodes have the outcome attribute. Hence the change statistic, computing the change
in the statistic when a node i has its outcome variable changed from 0 to 1, counts the number of out-neighbours
of i, i.e. nodes u such that there is an arc i → u, such that u has the outcome variable and there is also an arc
u → i.2 The ALAAMEE source code repository3 includes unit tests for verifying the correctness of change statistic
implementations against known correct values, verifying that alternative implementations give the same results, and
comparing their execution speeds.

Some change statistics make use of nodal attribute values. These change statistic functions take also as their first
parameter the name of the attribute to use, used as the key in the relevant attribute dictionary in the Graph object. So
that these functions have the same signature as the structural statistics, the higher-order function functools.partial

() is used to create a function with the (G, A, i) signature. For example, partial(changeoOc, "age") returns
a function with the required (G, A, i) signature, implementing the change statistic for outcome related to nodal
continuous attribute "age", given the original generic change statistic function changeoOc(attrname, G, A, i).
This usage is illustrated in the empirical example in Section 5.1. The same technique is used for statistics that use an
auxiliary (“setting”) network, a distance matrix, the decay value for geometrically weighted statistics (Stivala, 2023),
and for the node type (mode) in two-mode graphs using the BipartiteGraph object.

For some change statistics, computation can be made far more efficient and scalable by using a sparse matrix
counting two-paths between each pair of nodes in the network. A similar technique, implementing the sparse matrix
as a hash table, has been used for ERGM change statistics (Stivala et al., 2020a). This technique is far simpler and
more advantageous for ALAAM estimation and simulation in ALAAMEE, for two reasons, First, in ALAAM the
network is exogenous, and hence, once constructed, the two-path lookup sparse matrix need not be modified. Second,
the sparse matrix data structure is very easily and efficiently implemented in Python as a “dictionary of dictionaries”
data structure, just as the graph data structures are, since dictionaries are a built-in data type in Python.

2Note that the code in Figure 1 can be written less verbosely and more elegantly, and arguably in more idiomatic Python style, in a
single line using a list comprehension: return sum([(G.isArc(u, i)and A[u] == 1) for u in G.outIterator(i)]),
however this turns out to be slower.

3https://github.com/stivalaa/ALAAMEE
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Currently, change statistics for undirected and directed one-mode networks, and undirected two-mode (bipartite)
networks are implemented. These statistics include all of those used in the ALAAM models published in Kashima
et al. (2013); Letina (2016); Letina et al. (2016); Diviák et al. (2020) for undirected networks, and Gallagher (2019);
Parker et al. (2022) for directed networks, for example. ALAAMEE has been used to estimate ALAAM parameters
for a director interlock (bipartite) network (Stivala et al., 2023). Change statistics for the new geometrically weighted
ALAAM statistics described in Stivala (2023) are also implemented in ALAAMEE.

We hope that the use of Python will facilitate the implementation of further user-defined change statistics, since
adding ALAAM change statistics to the Python code, for example as shown in Figure 1, would appear to be consid-
erably easier than the procedure for adding new ERGM change statistics in the statnet ergm package, which requires
writing both R and C code (Hunter et al., 2013).

4 Simulation study for estimation using the equilibrium expectation algorithm

To evaluate the performance of the EE algorithm implemented in ALAAMEE for ALAAM parameter estimation
and statistical inference, we apply it to estimating parameters for ALAAM outcome vectors with known parameters.
These are obtained by generating the outcome vectors by ALAAM simulation from a fixed network (and covariates)
with a given set of ALAAM parameters. This is done over a set of 100 simulated ALAAMs, allowing us to measure
the point estimate bias and RMSE (root mean square error), as well as the type I (false positive) and type II (false
negative) error rates in inference.

This technique was used to evaluate ERGM estimation from snowball sampled network data in Stivala et al. (2016)
and for ERGM estimation by the EE algorithm in Stivala et al. (2020a). It was used to evaluate ALAAM estimation
from sampled network data in Stivala et al. (2020b).

Here we use the simulated ALAAM outcome values on the “Project 90” network, a sexual contact network of
high-risk heterosexuals in Colorado Springs (Potterat et al., 2004; Woodhouse et al., 1994; Klovdahl et al., 1994;
Rothenberg et al., 1995). These are exactly the simulations described in Stivala et al. (2020b). The network is the
giant component of the Project 90 network, consisting of 4430 nodes, with mean degree 8.31. Binary and continu-
ous attributes are generated for the nodes: the binary attribute is assigned the positive value for 50% of the nodes,
chosen at random, and the continuous attribute value vi at each node i is vi

iid∼ N(0,1). From this network and nodal
attributes, ALAAM outcome vectors are simulated with parameters (Density, Activity, Contagion, Binary, Continu-
ous) = (−15.0,0.55,1.00,1.20,1.15). As described in Stivala et al. (2020b), these parameters were chosen so that
approximately 15% of the nodes have the positive outcome attribute.

Figure 2 and Table 3 show the results for using the EE algorithm implemented in ALAAMEE to estimate pa-
rameters from the simulated ALAAMs. For all parameters other than Binary, the type II error rate is less than 5%.
For the Binary parameter, however, the type II error rate is estimated to be 59%, with a 95% confidence interval
[49%,68%]. When using the stochastic approximation algorithm on the same data, used as the baseline for comparing
against results from sampled data in Stivala et al. (2020b), the type II error rate is less than 5% for all parameters,
including Binary (Fig. A1). Comparing the results for the EE algorithm (Fig. 2) and the stochastic approximation
algorithm (Fig. A1) for the Binary parameter, it seems that the problem is likely not the point estimate, but rather that
the estimated standard errors (and hence confidence interval) from the EE algorithm are too large, giving a high type
II (false negative) error rate on the Binary parameter. Although this problem only occurs on the Binary parameter, the
coverage rate is higher than the nominal 95% on all the parameters: in fact is 100% for the EE algorithm, while for
the stochastic approximation algorithm, it is still higher than 95%, but less than 99% (Fig. A1).

Each of these estimation runs, with the default EE algorithm parameters, took on average 49 minutes (sd = 12.7,
min. = 44, max. = 216, median = 46, N = 8000) on an Intel Xeon E5-2650 v3 2.30 GHz processor on a Linux cluster.

In order to measure the type I error rate on each parameter, an ALAAM simulation without the corresponding
effect (the parameter value is zero) is required. Hence for each of the ALAAM parameters considered (other than
Density, which if zero results in almost all nodes have the outcome attribute), another set of 100 ALAAM outcome
vectors are simulated, with the parameter set to zero and the other parameters unchanged (apart from Activity, which
if zero results in very few nodes having the outcome attribute, and so Density is changed to −7.0 for this case only).

The results for estimating the type I error rate for ALAAM estimation by the EE algorithm are shown in Table 4.
In all cases the type I error rate is less than the nominal 5%. Just as for the type II error rate results, however, the
coverage rate is higher than the nominal 95%, indicating that the standard error estimates might be too large.
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Figure 2: Parameter estimates and estimated standard errors from the EE algorithm for the Project 90 network with
simulated attributes. The error bars show the nominal 95% confidence interval. The horizontal line shows the true
value of the parameter, and each plot is annotated with the mean bias, root mean square error (RMSE), the percentage
of samples for which the true value is inside the confidence interval (coverage rate), and the Type II error rate (False
Negative Rate, FNR). NC is the number of samples (of the total 100) for which a converged estimate was found.

Table 3: Type II error rate from estimation of simulated outcomes using the EE algorithm.

Effect Bias RMSE False negative rate (%) in C.I. Total Mean Total
Estim. 95% C.I. (%) samples runs runs per

lower upper converged converged sample
Density -0.4248 1.1780 0 0 4 100 100 100.00 100
Activity 0.0134 0.0475 0 0 4 100 100 100.00 100
Contagion 0.0338 0.0826 0 0 4 100 100 100.00 100
Binary 0.0249 0.2599 59 49 68 100 100 100.00 100
Continuous 0.0601 0.1724 0 0 4 100 100 100.00 100

The “estim.”, “lower”, and “upper” columns show the point estimate and lower and upper 95% confidence interval (C.I.), respec-
tively, of the Type II error rate (false negative rate). This C.I. is computed as the Wilson score interval (Wilson, 1927; Scherer,
2018). The “in C.I. (%)” column is the coverage rate for the nominal 95% confidence interval. Results are over 100 simulated
ALAAM outcome vectors (samples), each of which is estimated with 100 parallel estimation runs.
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Table 4: Type I error rate from estimation of simulated outcomes using the EE algorithm.

Effect Bias RMSE False positive rate (%) in C.I. Total Mean Total
Estim. 95% C.I. (%) samples runs runs per

lower upper converged converged sample
Activity 0.0050 0.0150 0 0 4 100 100 100.00 100
Contagion 0.0011 0.0386 0 0 4 100 100 100.00 100
Binary 0.0189 0.2924 0 0 4 100 100 99.98 100
Continuous 0.0471 0.1638 0 0 4 100 100 99.99 100

The “estim.”, “lower”, and “upper” columns show the point estimate and lower and upper 95% confidence interval (C.I.), respec-
tively, of the Type I error rate (false positive rate). This C.I. is computed as the Wilson score interval (Wilson, 1927; Scherer,
2018). The “in C.I. (%)” column is the coverage rate for the nominal 95% confidence interval. Results over 100 simulated
ALAAM outcome vectors (samples), each of which is estimated with 100 parallel estimation runs.
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Figure 3: Type II error rate (false negative rate) as the number of runs used for each sample is varied.
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In the results discussed so far, the point estimates and standard errors are estimated, as described in Section 3,
from 100 parallel estimation runs. Figure 3 shows the effect on the type II error rate when the number of runs is
varied from 1 up to 100 (the last data point, for 100 runs, therefore corresponding to the results shown in Table 3
and Figure 2). This shows that for all parameters other than Binary, 50 runs (indeed, for the Density, Activity, and
Contagion parameters, fewer than 20 runs) are more than sufficient to obtain a type II error rate of less than 5%. For
the Binary parameter, however, the type II error rate declines far more slowly, and is still above 50% with 100 runs,
as we have seen.

Figure A2 shows the corresponding results for the type I error rate. Although this graph is singularly uninteresting
to look at, it shows that it is “safe” to vary the number of runs, in the sense that the type I error rate remains unchanged
and less than 5% at all values tested.

The results of these simulation experiments indicate that it is desirable for the purposes of decreasing the type
II error rate, without increasing the type I error rate, to use as many runs of the ALAAMEE estimation process as
practical. Because these runs are independent, they can be run in parallel to minimize elapsed time, taking advantage
of as many processor cores as you have available. The results here indicate that 100 runs is a reasonable number,
however for some parameters this might still result in an undesirably high type II error rate.

5 Empirical examples

5.1 Small network

To demonstrate how to use the implementation of the stochastic approximation algorithm for estimating ALAAM
parameters, we will use the excerpt of 50 girls from the “Teenage friends and lifestyle study” data (Michell and
Amos, 1997; Pearson and Michell, 2000; Pearson and West, 2003; Pearson et al., 2006; Steglich et al., 2006; West and
Sweeting, 1996), which is used as an illustrative example for the SIENA software (Ripley et al., 2023) for stochastic
actor-oriented models (SAOMs) (Snijders, 2017). The data consists of an excerpt of 50 girls from panel data recording
friendship networks and substance use over a three year period from 1995, when the pupils were aged 13, to 1997,
in the West of Scotland. The data includes information on smoking (tobacco), alcohol, and cannabis consumption, as
well as sporting activities.

This data was also as a tutorial example for the Bayesian ALAAM (Koskinen and Daraganova, 2022) implemen-
tation in R.4 As noted in the description for this data,5 this is not a properly delineated network, and is used only for
illustrative purposes.

Unlike SAOMs, we cannot use ALAAMs to model the co-evolution of network and actor covariates based on
longitudinal data: we can only model a single binary outcome given a fixed network and other (fixed) covariates, as
well as the outcome itself on other nodes. As in the Bayesian ALAAM R tutorial, we will use smoking at the second
wave as the outcome variable, and use the network and other covariates from the first wave. Hence the network
assumed to diffuse social contagion is observed before the outcome variable, as discussed in Parker et al. (2022).

The categorical variable for smoking is converted to binary by treating any amount of smoking other than com-
pletely non-smoking as the positive binary outcome.

Python code to use ALAAMEE to specify an ALAAM model for this data and estimate its parameters using the
stochastic approximation algorithm (Snijders, 2002) is shown in Figure 4. It also automatically does a goodness-of-fit
test for the converged model (if found). This code took less than two minutes to run on a Windows 10 personal
computer with an Intel Core i5-10400 2.90 GHz processor, giving the model shown in Figure 5. The results are
consistent (only the contagion and alcohol effects are significant, and positive) with those from estimating the same
model using MPNet (Wang et al., 2014). For this small network, MPNet is faster, taking approximately one minute,
on the same PC.

The model shown in Figure 5 indicates a significant and positive contagion effect: smokers tend to be directly
connected to other smokers. The only other significant effect is for alcohol consumption; this is positive, indicating
that drinkers are more likely to smoke.

The goodness-of-fit statistics for this model are shown in Figure 6. The effects in the model are at the top, followed
by additional effects which are not included in the model. For effects in the model, the convergence statistic (t-ratio)

4https://github.com/johankoskinen/ALAAM
5https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
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1 from functools import partial
2 import estimateALAAMSA
3 from changeStatisticsALAAMdirected import *
4 from changeStatisticsALAAM import changeDensity, changeoOc
5

6 model_param_funcs = [changeDensity, changeSender, changeReceiver, changeContagion,
changeReciprocity, changeContagionReciprocity, changeEgoInTwoStar, changeEgoOutTwoStar,
changeMixedTwoStar, changeTransitiveTriangleT1, partial(changeoOc, "sport"), partial(
changeoOc, "alcohol")]

7

8 estimateALAAMSA.run_on_network_attr(
9 ’s50-friendships-directed.net’,

10 model_param_funcs,
11 [param_func_to_label(f) for f in model_param_funcs],
12 outcome_bin_filename = ’s50-outcome.txt’,
13 binattr_filename = ’s50-binattr.txt’,
14 contattr_filename = ’s50-contattr.txt’,
15 catattr_filename = ’s50-catattr.txt’,
16 directed = True
17 )

Figure 4: Python code for estimating parameters of an ALAAM model for the teenage friends and lifestyle data
excerpt, with smoking as the outcome variable. After a converged model is found, this will also do a goodness-of-fit
test.

Estimate Std.Error t-ratio
Density -1.150 2.375 0.021
Sender 0.340 1.213 -0.022

Receiver -0.933 1.403 0.049
Contagion 1.861 0.910 0.010 *

Reciprocity 1.171 1.465 0.029
ContagionReciprocity -2.913 2.054 0.031

EgoInTwoStar 0.328 0.484 0.049
EgoOutTwoStar 0.214 0.593 -0.053
MixedTwoStar -0.278 0.446 -0.010

TransitiveTriangleT1 -0.958 0.584 0.065
sport_oOc -1.541 1.026 0.001

alcohol_oOc 0.821 0.398 -0.023 *

Figure 5: Output from using the code in Figure 4 to estimate ALAAM parameters by stochastic approximation for
the teenage friends and lifestyle data excerpt, with smoking as the outcome variable. Asterisks indicate statistical
significance at p < 0.05.
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t-ratio
Density 0.075
Sender 0.024

Receiver 0.084
Contagion 0.051

Reciprocity 0.075
ContagionReciprocity 0.083

EgoInTwoStar 0.079
EgoOutTwoStar -0.012
MixedTwoStar 0.030

TransitiveTriangleT1 0.084
sport_oOc 0.066

alcohol_oOc 0.018
MixedTwoStarSource -0.036
MixedTwoStarSink -0.372

TransitiveTriangleT3 -0.045
TransitiveTriangleD1 -0.056
TransitiveTriangleU1 -0.050

CyclicTriangleC1 0.053
CyclicTriangleC3 -0.490
AlterInTwoStar2 0.002
AlterOutTwoStar2 -0.539

Figure 6: Goodness-of-fit output for the model in Figure 5, from running the code in Figure 4.

should be less than 0.1 in magnitude (just as they must be for the model to be considered converged by the estimation
algorithm). Figure 6 shows that all the effects included in the model meet this criterion.

For effects not included in the model, a rule of thumb is that the t-ratio should be less than 2.0 in magnitude for
an acceptable fit (Parker et al., 2022), although some authors have used a stricter threshold of 1.0 (Kashima et al.,
2013; Daraganova and Pattison, 2013), or even 0.3 (Diviák et al., 2020). Parker et al. (2022) use 1.645, signifying
statistical significance at the 5% level (one-tailed). All of the effects not included in the model, but included in the
goodness-of-fit test shown in Figure 6, are less than 1.0 in magnitude, indicating this model has an acceptable fit for
all the statistics included in the goodness-of-fit test.

5.2 Large networks

For networks with tens of thousands of nodes or more, estimating ALAAM parameters with the stochastic approxi-
mation algorithm may no longer be practical. For such networks, we can instead use the EE algorithm. We will use
three such networks as examples for ALAAMEE parameter estimation: undirected online friendship networks for the
“Deezer” music streaming service in Croatia, Hungary, and Romania (Rozemberczki et al., 2019). These networks
are publicly available from the Stanford large network dataset collection (Leskovec and Krevl, 2014). Descriptive
statistics of these networks are shown in Table 5.

Table 5: Network descriptive statistics for the Deezer networks.

Network Nodes Mean Max. Density Clustering Likes Likes
degree degree coefficient jazz % alternative %

Deezer Croatia 54573 18.26 420 0.00033 0.11463 5 38
Deezer Hungary 47538 9.38 112 0.00020 0.09292 5 37
Deezer Romania 41773 6.02 112 0.00014 0.07527 6 36

Each network is a single connected component. Network statistics were computed using the igraph R package (Csárdi and
Nepusz, 2006). “Clustering coefficient” is the global clustering coefficient (transitivity).
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Each node in these three networks represents a user, and an undirected edge represents friendship in the Deezer
online social network. Each node is annotated with a list of genres liked by the user (Rozemberczki et al., 2019).
Based on these genre annotations, we created two different binary outcome variables: one for liking jazz, and one for
liking “alternative” music. The binary outcome variable for liking jazz is true if the user likes any one or more of the
genres in the data that describe jazz music, namely “Jazz”, “Instrumental jazz”, “Jazz Hip Hop”, or “Vocal Jazz”. The
binary outcome variable for liking alternative music is true if the user likes the genre in the data labelled “Alternative”.
Consistently across all three networks, approximately 5% of users like jazz, and between 35% and 40% of users like
alternative music (Table 5).

Table 6 shows the results of using the EE algorithm implemented in ALAAMEE to estimate parameters for
ALAAM models of the three Deezer online social networks, with liking jazz as the outcome variable. The model
parameters were selected to test for social contagion of liking jazz on this social network (the Contagion parameter),
including specifically in closed triads (the three Triangle parameters), while also accounting for the degree distribution
of users who like jazz (the GWActivity parameter), and the number of genres liked by a user and their friends.
Degeneracy check plots for these models are shown in Figures A3, A4, and A5.

Table 6: Models estimated using ALAAMEE with the EE algorithm for the Deezer networks, with liking jazz as the
outcome variable.

Effect Croatia Hungary Romania
Density −4.727

(−4.922,−4.533)
−5.054

(−5.271,−4.837)
−4.689

(−4.947,−4.431)
GWActivity [α = 2.0] −2.938

(−8.895,3.018)
5.237

(2.484,7.990)
1.607

(−1.836,5.050)

Contagion −0.008
(−0.178,0.162)

0.265
(0.110,0.420)

0.613
(0.323,0.903)

TriangleT1 — — −0.034
(−0.094,0.027)

TriangleT2 — — 0.004
(−0.254,0.262)

TriangleT3 — — −0.020
(−1.063,1.023)

num. genres 0.194
(0.183,0.204)

0.193
(0.181,0.204)

0.194
(0.180,0.207)

partner num. genres −0.000
(−0.002,0.001)

— −0.006
(−0.013,0.001)

Converged runs 100 100 100
Total runs 100 100 100

Parameter estimates are shown with 95% confidence interval. Estimates that are statistically significant at the nominal p < 0.05
level are shown in bold.

This model was estimated first on the Romania network (the smallest of the three). Initially the Activity parameter,
rather than GWActivity, was used, however the degeneracy check showed that this model was not properly converged,
and hence the geometrically weighted activity parameter GWActivity (with decay parameter α = 2.0) was used instead
of Activity to overcome this problem, as described in Stivala (2023). This model, however, did not converge for the
Croatia and Hungary data, but removing the triangle parameters solved this problem, resulting in the models shown
in Table 6 (for Hungary, the partner number of genres parameter also had to be removed to find a converged model).

The only parameter (apart from Density, or baseline incidence) that is significant across all three networks is the
number of genres liked by a user: rather unsurprisingly, the more genres a user likes, the more likely they are to
like jazz. The Contagion parameter is positive and significant for both Hungary and Romania, indicating that (given
the assumptions of the model) a liking for jazz is socially contagious in these countries’ networks. However this
parameter is not significant for Croatia.

Estimating these models (100 parallel estimations) took approximately 22, 11, and 32 minutes, for Croatia, Hun-
gary, and Romania, respectively, on AMD EPYC 7543 2.8 GHz processors on a Linux cluster. We also estimated the
same models with ALAAMEE using the stochastic approximation algorithm, and the results are shown in Table B1.
These estimations took approximately 32, 14, and 36 hours for Croatia, Hungary, and Romania, respectively, on the
same system. The results are consistent with those of the estimation with the EE algorithm. However four parameter
estimates are found to be statistically significant by the stochastic approximation algorithm that were not when using
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the EE algorithm: GWActivity for Croatia, and GWActivity, TriangleT1, and partner number of genres for Romania.
For the Romania network, the negative and significant TriangleT1 parameter indicates that users who like jazz are

less likely to be involved in a triangle structure than other users. The negative and significant partner number of genres
parameter indicates that users who have friends who like many genres are less likely to like jazz (while the positive
and significant number of genres parameter means that a user who likes many genres is more likely to like jazz).

Note that, as discussed in Section 2, by using the ALAAM model, in which the networks ties are fixed (exogenous
to the model), we are assuming that only the process of social influence (contagion) is occurring, without the ability
to account for the possibility that friends (network neighbours) might both like the same genre of music due to
homophily.

Table 7 shows the results of using the EE algorithm to estimate ALAAM parameters for the same three networks,
but this time with liking alternative music as the outcome variable. For this data, the full model was able to be
estimated for all three countries. Degeneracy check plots for these models are shown in Figures A6, A7, and A8.

Table 7: Models estimated using ALAAMEE with the EE algorithm for the Deezer networks, with liking “alternative”
music as the outcome variable.

Effect Croatia Hungary Romania
Density −3.276

(−3.399,−3.153)
−3.019

(−3.148,−2.890)
−3.157

(−3.310,−3.004)
GWActivity [α = 2.0] −0.348

(−3.666,2.970)
0.089

(−2.449,2.628)
−0.380

(−2.754,1.993)

Contagion −0.010
(−0.074,0.053)

0.158
(0.070,0.246)

0.109
(−0.001,0.219)

TriangleT1 −0.001
(−0.010,0.008)

−0.006
(−0.028,0.015)

−0.018
(−0.069,0.033)

TriangleT2 0.003
(−0.018,0.023)

0.000
(−0.045,0.046)

−0.005
(−0.100,0.090)

TriangleT3 −0.008
(−0.062,0.046)

0.028
(−0.090,0.146)

0.044
(−0.173,0.262)

num. genres 0.448
(0.434,0.462)

0.419
(0.404,0.435)

0.405
(0.389,0.421)

partner num. genres 0.001
(−0.003,0.004)

−0.010
(−0.016,−0.004)

−0.002
(−0.009,0.005)

Converged runs 100 100 100
Total runs 100 100 100

Parameter estimates are shown with 95% confidence interval. Estimates that are statistically significant at the nominal p < 0.05
level are shown in bold.

The results are qualitatively quite similar to the model for jazz, in that the only parameter estimate (other than
Density) that is statistically significant across all three networks is number of genres, which is positive. The Conta-
gion parameter is statistically significant only for the Hungary network, and again is positive. None of the Triangle
parameters are statistically significant in any of the three countries.

Estimating these models (100 parallel estimations) took approximately 203, 59, and 41 minutes, for Croatia, Hun-
gary, and Romania, respectively (on the same system as the jazz model). We also attempted to estimate the same mod-
els using the stochastic approximation algorithm, however for the Croatia and Hungary networks these estimations
did not complete within a 48 hour elapsed time limit. The estimation for the Romania network took approximately
30 hours, and the resulting parameter estimates are shown in Table B2. These estimates are consistent with those
estimated by the EE algorithm, however the stochastic approximation algorithm finds the Contagion parameter to be
statistically significant (and positive) while the EE algorithm does not.

6 Conclusions and future work

ALAAMEE is open-source Python software for the estimation, simulation, and goodness-of-fit testing of the ALAAM
social influence model. It currently supports ALAAMs on undirected and directed one-mode networks, and undirected
two-mode (bipartite) networks. It also supports estimation from snowball sampled network data.

Models can be estimated using either stochastic approximation with the Robbins–Monro algorithm, or, for large
networks, by the EE algorithm. For networks small enough that it is practical — on the order of thousands of nodes, but
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also depending on the model parameters and data — we recommend using stochastic approximation, a well-known and
widely used method, which is implemented in ALAAMEE just as it is in MPNet for ALAAM parameter estimation.
However for larger networks, stochastic approximation is likely to be too slow to be practical, and so the EE algorithm
can be used instead. In this work we demonstrated its use on networks on networks of approximately 50 000 nodes,
for which stochastic approximation was feasible in some, but not all, cases. The use of the EE algorithm implemented
in ALAAMEE to estimate ALAAM parameters for a much larger network, with approximately 1.6 million nodes, for
which estimation by stochastic approximation is certainly not feasible, is described in Stivala (2023).

When using the EE algorithm, the results shown in Section 4 indicate that it is always advantageous, and does not
result in an increased false positive rate, to use as many runs as practical, and 100 is probably more than sufficient in
most cases. Because these runs are entirely independent, elapsed time can be minimized by running them in parallel
using as many compute cores and nodes as you have available.

The EE algorithm is fast, scalable to far larger networks, and able to take advantage of multicore and large-scale
parallel computing. The simplified EE algorithm (Borisenko et al., 2020) used in ALAAMEE has recently been
shown, in the context of ERGMs, to be guaranteed to converge to the MLE, if it exists, when the learning rate (a
parameter of the EE algorithm) is sufficiently small (Giacomarra et al., 2023). The proof uses the uncertain energies
framework of Ceperley and Dewing (1999), as originally suggested in Borisenko et al. (2020).

However, as shown in this work, using this algorithm can result in very low statistical power on some parameters,
due to larger estimated standard errors than the stochastic approximation method on the same data. This has also
been observed in using the EE algorithm to estimate parameters for the “citation ERGM” (cERGM) ERGM variant
(Schmid et al., 2022), compared with using the default statnet MCMLE algorithm (Stivala and Lomi, 2022).

Because ALAAMEE is written in Python using only the NumPy package, it can easily be run on any system on
which Python and NumPy are available. This also facilitates its use in automated scripts, for example for large-scale
computational experiments such as those described in Section 4 and Stivala et al. (2020b), which is not practical with
a Windows application like MPNet.

The relative ease of Python programming, along with the simple and documented implementations, with unit tests,
of a variety of ALAAM change statistics already included in the open-source ALAAMEE software, should facilitate
the creation of change statistics for any new configurations required by users of the software.

A demonstration implementation of the EE algorithm for ERGM parameter estimation was written in Python in the
same style as ALAAMEE, that is, using NumPy for linear algebra and Python dictionaries for graph data structures.
However this was found to be too slow for practical use, and the software6 was completely re-written in C (Stivala
et al., 2020a). For ALAAM, however, where the MCMC process involves flipping binary variables in a vector rather
than edges in a graph, we found that the Python implementation ALAAMEE was sufficiently fast for practical use not
only with the EE algorithm, but also with the Robbins–Monro algorithm.

In theory, ALAAMEE could be made considerably faster with little effort by using a Python “just-in-time” (JIT)
compiler, such as Numba (Lam et al., 2015) or PyPy (Bolz et al., 2009). However to date we have been unable to
accelerate ALAAMEE this way, finding that either the code is not supported, or the “accelerated” version is actually
slower than the original.

In Parker et al. (2022), three limitations of ALAAMs are identified. First, the outcome variable is restricted to
binary; second, the inherent assumption that the underlying social contagion process is at equilibrium; and third, their
inadequacy for very large networks. We suggest that this work, in addition to the use of ALAAM estimation from
network snowball samples (Stivala et al., 2020b) effectively addresses the third limitation. The second limitation can
be mitigated as suggested in Parker et al. (2022), by applying ALAAM models to data in which the social network is
observed at an appropriate time before the outcome behavioural variable is. If longitudinal (panel) data is available, in
which the social network ties and actor attributes of a population are observed at multiple time points, the stochastic
actor attribute model (SAOM), is a more appropriate choice of model, enabling the estimation of parameters corre-
sponding to the co-evolution of the social network and actor attributes (Snijders, 2017). This leaves the first limitation,
that the outcome variable must be binary, to be addressed in future work. We have identified an additional limitation
of ALAAMs in this work and in Stivala (2023), namely that, like ERGMs, ALAAMs can suffer from problems of
“near-degeneracy” when only simple statistics (such as Activity) are used, particularly on larger networks. The use
of the GWActivity parameter can help overcome these problems, but as illustrated by the examples in Section 5.2, it
still may not always be possible to fit a model with all the desired parameters. Some avenues for further work on this
problem are suggested in Stivala (2023).

6https://github.com/stivalaa/EstimNetDirected
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One further avenue of further work on ALAAM modeling was suggested in Section 1: the conception of an
ALAAM as a bipartite ERGM could be a way of implementing a multivariate ALAAM, that is, an ALAAM with
more than one outcome variable.

Funding

This work was funded by the Swiss National Science Foundation project numbers 167326 (NRP 75) and 200778.

Acknowledgements

We used the high performance computing cluster at the Institute of Computing, Università della Svizzera italiana, for
the computational experiments described in Section 4. The computational experiments described in Section 5.2 were
performed on the OzSTAR national facility at Swinburne University of Technology. The OzSTAR program receives
funding in part from the Astronomy National Collaborative Research Infrastructure Strategy (NCRIS) allocation pro-
vided by the Australian Government, and from the Victorian Higher Education State Investment Fund (VHESIF)
provided by the Victorian Government.

Data availability statement

The “Project 90” data (Potterat et al., 2004; Woodhouse et al., 1994; Klovdahl et al., 1994; Rothenberg et al., 1995;
Goel and Salganik, 2010) is available upon registration from https://oprdata.princeton.edu/archive/
p90/. The excerpt of 50 girls from the “Teenage friends and lifestyle study” data (Michell and Amos, 1997; Pearson
and Michell, 2000; Pearson and West, 2003; Pearson et al., 2006; Steglich et al., 2006; West and Sweeting, 1996)
is available from https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm. The “Deezer”
(Rozemberczki et al., 2019) data is available from the Stanford large network dataset collection (Leskovec and Krevl,
2014) at https://snap.stanford.edu/data/gemsec-Deezer.html. All other data, source code, and
scripts are freely available from https://github.com/stivalaa/ALAAMEE.

16

https://oprdata.princeton.edu/archive/p90/
https://oprdata.princeton.edu/archive/p90/
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
https://snap.stanford.edu/data/gemsec-Deezer.html
https://github.com/stivalaa/ALAAMEE


References

V. Amati, A. Lomi, and A. Mira. Social network modeling. Annual Review of Statistics and its Application, 5:
343–369, 2018.

L. Anselin. Some robust approaches to testing and estimation in spatial econometrics. Regional Science and Urban
Economics, 20(2):141–163, 1990.

M. L. Barnes, P. Wang, J. E. Cinner, N. A. Graham, A. M. Guerrero, L. Jasny, J. Lau, S. R. Sutcliffe, and J. Zamborain-
Mason. Social determinants of adaptive and transformative responses to climate change. Nature Climate Change,
10(9):823–828, 2020.

F. Bianchi, A. Stivala, and A. Lomi. Multiple clocks in network evolution. Methodological Innovations, 15(1):29–41,
2022.

C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-level: PyPy’s tracing JIT compiler. In Pro-
ceedings of the 4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ICOOOLPS ’09, page 18–25, New York, NY, USA, 2009. Association for Computing
Machinery. doi: 10.1145/1565824.1565827.

A. Borisenko, M. Byshkin, and A. Lomi. A simple algorithm for scalable Monte Carlo inference. arXiv preprint
arXiv:1901.00533v4, 2020.

Y. Bramoullé, H. Djebbari, and B. Fortin. Peer effects in networks: A survey. Annual Review of Economics, 12:
603–629, 2020.

M. Byshkin, A. Stivala, A. Mira, R. Krause, G. Robins, and A. Lomi. Auxiliary parameter MCMC for exponential
random graph models. Journal of Statistical Physics, 165(4):740–754, 2016.

M. Byshkin, A. Stivala, A. Mira, G. Robins, and A. Lomi. Fast maximum likelihood estimation via equilibrium
expectation for large network data. Scientific Reports, 8:11509, 2018.

D. Ceperley and M. Dewing. The penalty method for random walks with uncertain energies. Journal of Chemical
Physics, 110(20):9812–9820, 1999.

M. Chakraborty, M. Byshkin, and F. Crestani. Patent citation network analysis: A perspective from descriptive
statistics and ERGMs. PLoS ONE, 15(12):e0241797, 2020.

A. D. Cliff and J. K. Ord. Spatial processes: models & applications. Taylor & Francis, 1981.

G. Csárdi and T. Nepusz. The igraph software package for complex network research. InterJournal, Complex
Systems:1695, 2006. URL https://igraph.org.

N. Dai and G. L. Jones. Multivariate initial sequence estimators in Markov chain Monte Carlo. Journal of Multivariate
Analysis, 159:184–199, 2017.

G. Daraganova. Statistical models for social networks and network-mediated social influence processes: Theory and
application. PhD thesis, The University of Melbourne, 2009.

G. Daraganova and P. Pattison. Autologistic actor attribute model analysis of unemployment: Dual importance of
who you know and where you live. In D. Lusher, J. Koskinen, and G. Robins, editors, Exponential Random Graph
Models for Social Networks, chapter 18, pages 237–247. Cambridge University Press, New York, 2013.

G. Daraganova and G. Robins. Autologistic actor attribute models. In D. Lusher, J. Koskinen, and G. Robins, editors,
Exponential Random Graph Models for Social Networks, chapter 9, pages 102–114. Cambridge University Press,
New York, 2013.

T. Diviák, J. A. Coutinho, and A. D. Stivala. A man’s world? Comparing the structural positions of men and women
in an organized criminal network. Crime, Law and Social Change, 74(5):547–569, 2020.

17

https://igraph.org


P. Doreian. Estimating linear models with spatially distributed data. Sociological Methodology, 12:359–388, 1981.

I. Fellows and M. S. Handcock. Exponential-family random network models. arXiv preprint arXiv:1208.0121, 2012.

I. E. Fellows and M. S. Handcock. Analysis of partially observed networks via exponential-family random network
models. arXiv preprint arXiv:1303.1219, 2013.

J. M. Flegal and G. L. Jones. Batch means and spectral variance estimators in Markov chain Monte Carlo. The Annals
of Statistics, 38(2):1034–1070, 2010.

J. M. Flegal, J. Hughes, D. Vats, N. Dai, K. Gupta, and U. Maji. mcmcse: Monte Carlo Standard Errors for MCMC.
Riverside, CA, and Kanpur, India, 2021. R package version 1.5-0.

N. E. Friedkin. Social networks in structural equation models. Social Psychology Quarterly, 53(4):316–328, 1990.

H. C. Gallagher. Social networks and the willingness to communicate: Reciprocity and brokerage. Journal of Lan-
guage and Social Psychology, 38(2):194–214, 2019.

F. Giacomarra, G. Bet, and A. Zocca. Generating synthetic power grids using exponential random graphs models.
arXiv preprint arXiv:2310.19662v1, 2023.

S. Goel and M. J. Salganik. Assessing respondent-driven sampling. Proceedings of the National Academy of Sciences
of the USA, 107(15):6743–6747, 2010.

M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau, Morris, and Martina. statnet: Software tools for the
representation, visualization, analysis and simulation of network data. Journal of Statistical Software, 24(1):1–11,
2008. URL http://www.jstatsoft.org/v24/i01.

M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau, P. N. Krivitsky, and M. Morris. ergm: Fit, Simulate and
Diagnose Exponential-Family Models for Networks. The Statnet Project (http://www.statnet.org), 2022.
URL http://CRAN.R-project.org/package=ergm. R package version 4.3.2.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río,
M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi: 10.1038/s41586-020-2649-2.

J. Hartung, G. Knapp, and B. K. Sinha. Statistical meta-analysis with applications. John Wiley & Sons, Hoboken,
NJ, 2008.

R. M. Hummel, D. R. Hunter, and M. S. Handcock. Improving simulation-based algorithms for fitting ERGMs.
Journal of Computational and Graphical Statistics, 21(4):920–939, 2012.

D. R. Hunter and M. S. Handcock. Inference in curved exponential family models for networks. Journal of Compu-
tational and Graphical Statistics, 15(3):565–583, 2006.

D. R. Hunter, M. S. Handcock, C. T. Butts, S. M. Goodreau, and M. Morris. ergm: A package to fit, simulate
and diagnose exponential-family models for networks. Journal of Statistical Software, 24(3):1–29, 2008. URL
https://www.jstatsoft.org/v024/i03.

D. R. Hunter, P. N. Krivitsky, and M. Schweinberger. Computational statistical methods for social network models.
Journal of Computational and Graphical Statistics, 21(4):856–882, 2012.

D. R. Hunter, S. M. Goodreau, and M. S. Handcock. ergm.userterms: A template package for extending statnet.
Journal of Statistical Software, 52(2):1–25, 2013. doi: 10.18637/jss.v052.i02.

G. L. Jones, M. Haran, B. S. Caffo, and R. Neath. Fixed-width output analysis for Markov chain Monte Carlo. Journal
of the American Statistical Association, 101(476):1537–1547, 2006.

Y. Kashima, S. Wilson, D. Lusher, L. J. Pearson, and C. Pearson. The acquisition of perceived descriptive norms as
social category learning in social networks. Social Networks, 35(4):711–719, 2013.

18

http://www.jstatsoft.org/v24/i01
http://www.statnet.org
http://CRAN.R-project.org/package=ergm
https://www.jstatsoft.org/v024/i03


A. S. Klovdahl, J. J. Potterat, D. E. Woodhouse, J. B. Muth, S. Q. Muth, and W. W. Darrow. Social networks and
infectious disease: The Colorado Springs study. Social Science & Medicine, 38(1):79–88, 1994.

J. Koskinen. Exponential random graph modelling. In P. Atkinson, S. Delamont, A. Cernat, J. Sakshaug,
and R. Williams, editors, SAGE Research Methods Foundations. SAGE, London, 2020. doi: 10.4135/
9781526421036888175.

J. Koskinen. Exponential random graph models. In J. McLevey, J. Scott, and P. J. Carrington, editors, The Sage
Handbook of Social Network Analysis, chapter 33, pages 474–500. Sage, second edition, 2023.

J. Koskinen and G. Daraganova. Bayesian analysis of social influence. Journal of the Royal Statistical Society Series
A: Statistics in Society, 185(4):1855–1881, 2022.

P. N. Krivitsky, D. R. Hunter, M. Morris, and C. Klumb. ergm 4: New features for analyzing exponential-family
random graph models. Journal of Statistical Software, 105(1):1–44, 2023. doi: 10.18637/jss.v105.i06.

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based Python JIT compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, New York, NY, USA, 2015. Association for
Computing Machinery. doi: 10.1145/2833157.2833162.

R. T. A. Leenders. Modeling social influence through network autocorrelation: constructing the weight matrix. Social
Networks, 24(1):21–47, 2002.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.
edu/data, June 2014.

S. Letina. Network and actor attribute effects on the performance of researchers in two fields of social science in a
small peripheral community. Journal of Informetrics, 10(2):571–595, 2016.
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Figure A1: Stochastic approximation parameter estimates and estimated standard errors for the Project 90 network
with simulated attributes. This is the baseline result for the Project 90 example in a study of the effect of network
sampling on ALAAM estimation (Stivala et al., 2020b). The error bars show the nominal 95% confidence interval.
The horizontal line shows the true value of the parameter, and each plot is annotated with the mean bias, root mean
square error (RMSE), the percentage of samples for which the true value is inside the confidence interval (coverage
rate), and the Type II error rate (False Negative Rate, FNR). A converged estimate was found for 99 of the total 100
samples.
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Figure A2: Type I error rate (false positive rate) as the number of runs used for each sample is varied.
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Figure A3: Degeneracy check for the Deezer Croatia network with liking jazz as the outcome variable (Table 6). Trace
plots and histograms show statistics of 100 networks simulated from the model. The blue lines on the histograms show
mean and 95% confidence interval, and red lines show the observed values.
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Figure A4: Degeneracy check for the Deezer Hungary network with liking jazz as the outcome variable (Table 6).
Trace plots and histograms show statistics of 100 networks simulated from the model. The blue lines on the histograms
show mean and 95% confidence interval, and red lines show the observed values.
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Figure A5: Degeneracy check for the Deezer Romania network with liking jazz as the outcome variable (Table 6).
Trace plots and histograms show statistics of 100 networks simulated from the model. The blue lines on the histograms
show mean and 95% confidence interval, and red lines show the observed values.
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Figure A6: Degeneracy check for the Deezer Croatia network with liking “alternative” music as the outcome variable
(Table 7). Trace plots and histograms show statistics of 100 networks simulated from the model. The blue lines on
the histograms show mean and 95% confidence interval, and red lines show the observed values.
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Figure A7: Degeneracy check for the Deezer Hungary network with liking “alternative” music as the outcome variable
(Table 7). Trace plots and histograms show statistics of 100 networks simulated from the model. The blue lines on
the histograms show mean and 95% confidence interval, and red lines show the observed values.
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Figure A8: Degeneracy check for the Deezer Romania network with liking “alternative” music as the outcome variable
(Table 7). Trace plots and histograms show statistics of 100 networks simulated from the model. The blue lines on
the histograms show mean and 95% confidence interval, and red lines show the observed values.
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Appendix B Supplementary tables

Table B1: Models estimated using ALAAMEE with the stochastic approximation algorithm for the Deezer networks,
with liking jazz as the outcome variable.

Effect Croatia Hungary Romania
Density −4.706

(0.050)
−5.022
(0.051)

−4.659
(0.057)

GWActivity [α = 2.0] −2.813
(0.861)

5.266
(0.681)

1.666
(0.584)

Contagion −0.009
(0.032)

0.266
(0.030)

0.610
(0.057)

TriangleT1 — — −0.033
(0.009)

TriangleT2 — — 0.009
(0.049)

TriangleT3 — — −0.068
(0.201)

num. genres 0.193
(0.003)

0.192
(0.003)

0.192
(0.003)

partner num. genres −0.000
(0.000)

— −0.006
(0.001)

Parameter estimates are shown with their estimated standard errors. Parameter estimates that are statistically significant at the
nominal p < 0.05 level are shown in bold.

Table B2: Model estimated using ALAAMEE with the stochastic approximation algorithm for the Deezer Romania
network, with liking “alternative” music as the outcome variable.

Effect Estimate Std. error t-ratio
Density -3.136 0.032 0.015 *
GWActivity [α = 2.0] -0.352 0.334 0.016
Contagion 0.110 0.019 0.031 *
TriangleT1 -0.019 0.010 -0.016
TriangleT2 -0.004 0.021 0.018
TriangleT3 0.042 0.046 0.024
num. genres 0.401 0.004 -0.032 *
partner num. genres -0.002 0.001 0.009

Asterisks indicate statistical significance at the nominal p < 0.05 level. Only the results for Romania are shown, as estimation
for the other two networks (Croatia and Hungary) did not complete within the 48 hour elapsed time limit.
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