
Lock-free parallel dynamic programming
Alex Stivala3'*, PeterJ. Stuckeya,b, Maria Garcia de la Bandac, Manuel Hermenegildod,e, Anthony Wirtlr
a Department of Computer Science and Software Engineering, University of Melboume, 30Í0, Australia
b NICTA Victoria Research Laboratories, Australia
c School of Information Technology, Monash University, 6800, Australia
d 1MDEA Software, Madrid, Spain
e Universidad Politécnica de Madrid (UPM), Madrid, Spain

A B S T R A C T

We show a method for parallelizing top down dynamic programs in a straightforward way by a careful
choice of a lock-free shared hash table implementation and randomization of the order in which the
dynamic program computes its subproblems. This generic approach is applied to dynamic programs
for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for
minimizing the máximum number of open stacks. Experimental results are provided on three different
modern multicore architectures which show that this parallelization is effective and reasonably scalable.
In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem.

1. Introduction

Dynamic programming [2] is a powerful technique for solving
any optimization problem for which an optimal solution can be
efficiently computed from optimal solutions to its subproblems.
The idea is to avoid recomputing the optimal solution to these
subproblems by reusing previously computed valúes. Thus, for
dynamic programming to be useful, the same subproblems must
be encountered often enough while solving the original problem.

Dynamic programming can be easily implemented using either
a "bottom-up" or "top-down" approach. In the "bottom-up"
approach, the solution to every single subproblem is computed
and stored in the dynamic programming matrix, starting from
the smallest subproblems until the solution to the entire problem
is finally computed. This approach is particularly simple to
implement; it requires no recursion and no data structure
more sophisticated than an array. It is also efficient if (a) the
problem is small enough for the entire matrix to be stored in
memory, and (b) the computation of unnecessary cells does not
introduce too much overhead. The classic bioinformatics sequence

alignment algorithms of Needleman and Wunsch [22] and Smith
and Waterman [30] are generally implemented in this way, for
example.

In contrast, the "top-down" approach starts from the function
cali to compute the solution to the original problem, and uses
recursion to only compute the solution to those subproblems
that are actually encountered when solving the original problem.
Previously computed valúes are reused by applying a technique
called memoization. In this technique each computed valué is
stored in an associative array (implemented, for example, by a
hash table). Then, the recursive function tests if the valué it is
called for has been previously computed (and therefore exists in
the associative array) and, if so, simply reuses the valué rather
than recomputing it. This approach to implementing dynamic
programming avoids the computation of unnecessary valúes and
is particularly effective when combined with branch-and-bound
techniques to further reduce unnecessary computations [24].

Previous efforts at parallelizing dynamic programming have fo-
cused on the "bottom-up" style dynamic programming matrix, by
computing in parallel cells known to have no data dependencies.
For example, the Smith-Waterman algorithm has been acceler-
ated by the parallel computation of cells in the matrix that can
be computed independently by the use of SIMD vector instruc-
tions [36,25,6], special-purpose hardware [23], general-purpose
graphics processing units (CPCPUs) [14,16], or other parallel pro-
cessors such as the Cell Broadband Engine [35]. More generally,Tan

et al. [31] describe a parallel pipelined algorithm to exploit fine-
grained parallelism in dynamic programs, and apply it to Zuker's
algorithm [40,15] for predicting RNA secondary structure. Subse-
quently, Xia et al. [37] implemented their own specific paralleliza-
tion of the Zuker algorithm on FPGA hardware. Chowdhury and
Ramachandran [5] describe tiling sequences (recursive decompo-
sitions) for several classes of dynamic programs for cache-efficient
implementation on multicore architectures.

All these techniques require careful analysis of each particular
algorithm to find the data dependencies in the dynamic program-
ming matrix, resulting in a parallelization that is specific to each
individual problem. Furthermore, they only work on the "bottom-
up" approach and, therefore, can only be applied to problems for
which computing every cell is feasible.

In this paper we describe a general technique for parallelizing
dynamic programs in modern multicore processor architectures
with shared memory. The contributions of our paper are:

• a generic approach to parallelizing "top-down" dynamic
programming approach by using
- a lock-free hash table for the memoization, where each thread

computes the entire problem but shares results through the
hash table;

- the randomization of the order in which the dynamic
program computes its subproblems to encourage divergence
of the thread computations, so that fewer subproblems are
computed by more than one thread simultaneously;

• an effective algorithm for a lock-free hash table supporting only
insertions and lookups; and

• experimental results showing that this approach can produce
substantial speedups on a variety of dynamic programs.

The remainder of the paper is organized as follows. In the next
section we describe our approach to the parallelization of top-
down dynamic programs. In Section 3 we define our hash table
implementations, and show their effectiveness in the case where
the ratio of inserts to lookups is quite high. In Section 4 we give
the results of experiments on four different dynamic programs on
three different architectures, illustrating the effectiveness of the
parallelization. Finally, in Section 5 we conclude.

2. Parallelizing top down dynamic programs

Our approach to parallelizing top-down dynamic programs
is simple. Each thread solves the entire dynamic program
independently except that whenever it determines a result to a
subproblem it places it in a shared hash table, and whenever it
begins to compute the answer of a subproblem it checks whether
the result already exists in the shared hash table. When one thread
has found the solution to the entire dynamic program, we have the
answer and simply termínate all other threads.

As previously mentioned, an advantage of the "top-down"
versus the simpler "bottom-up" dynamic programming approach,
is that the former might not need to compute a valué for every
subproblem. This opens up the question of the order in which
to compute the subproblems, since this order can make a large
difference to the number of cells computed [8,24].

In a serial (single-threaded) implementation, we are con-
strained to choosing a single order in which to compute the sub
problems. However, now that we have múltiple threads available
and the means to safely share valúes between them, we can par-
allelize the dynamic program by simply starting several threads
at the function cali with a randomized ordering choice. That is,
each thread runs exactly the same function, starting at the same
point, but the randomization of the choice of subproblems results
in the threads diverging to compute different subproblems, while
still reusing any valué that has already been computed by a thread.

f(s)
v <— lookup(x)
if v ji KEYJMOT JOUND

returnw
if b(x) then v <— g(x)
else

for i e l..n
v[i]«- f(íi)

v<-F(v[Í\,...,v[n])
insert(x,«)
returm

m
v <- parJookupix)
if v 5Í KEYJMOTJOUND

returnt)
if b(x) then y <— g{x)
else

for i 6 í..n in rondom order
V[i] <- f(Xi)

«<-F(i ; [l] v[n])
paunsei%x,v)
return?;

Fig. 1. Generic top-down dynamic programming code on the left, and the
parallelized versión on the right.

In this way we take advantage of whatever parallel computing
power is available to us to compute different subproblems simul
taneously.

Throughout this paper we will use the 0/1 knapsack problem,
a classic problem for dynamic programming, as an example to
demónstrate our technique. In this problem, we are given the
total weight (or capacity) W of the knapsack, and a set of n Ítems
{ 1 , . . . , n}, where each item i has been assigned a weight w¡ and
a profit p¡. The problem is to choose the subset of Ítems / c
{ 1 , . . . , n} such that ^ ¡ e / w¡ < W and profit ^ ¡ e / p¡ is maximized.
The dynamic programming formulation computes the optimal
profit k(i, w) using only Ítems in 1 , . . . , i with a weight limit w as:

fO i f i = 0
k(i, w) = \ k(i — 1, w) if w < Wj

lmax{/<(¡ — 1, w), k(i — 1, w — w¡) + p¡} otherwise.

The above dynamic program is presented as a recurrence
relation, where the order of computation of the two subproblems
in the last case is not defined. However, an implementation using
the "top-down" approach and memoization needs to determine
an order. In the simple dynamic programming formulation of the
0/1 knapsack problem presented above, our technique randomly
chooses, with equal probability, one ofk(¡ — 1, w) andk(¡ — 1, w —
Wi) + p¡ to compute first.

In general, consider a dynamic program/ defined as follows:

f(x) = ifb(x)theng(x)
elseFtf (x O , . . . , / & ,))

where b(x) holds for the base cases (which do not require
considering subproblems), g(x) is the result for base cases, and
F is a function combining the optimal answers to a number of
sub-problems X\,..., xn. The pseudo-code to implement / as a
recursive top-down dynamic program is shown on the left of Fig. 1,
where insert (x, v) and lookup(x) respectively insert a valué v for
key x in a hash table and look up the stored valué.

The key insight of this paper is that we can run / in
parallel simply by (a) using a shared parallel hash table and (b)
randomizing the order in which we compute the subproblems. The
resulting pseudo-code is shown on the right of Fig. 1 with (the very
few) changes shown in italics. Each of the parallel threads executes
this versión of/.

Instead of this simple randomization technique, it could be
possible to map particular subproblems to particular threads in
advance, in order to ensure the divergence of paths through the
subproblems from the beginning. For the knapsack problem, this
is not particularly difficult, since there are exactly two choices of
subproblem at each level, so we can simply fix the ordering for
the first log2(n) levéis for each of n threads. However, this requires
analysis of each particular dynamic program, including how many
subproblems exist at each level and perhaps even which are likely
to be easy and which hard. For more complex dynamic programs
(such as the open stacks problem and RNA structural alignment,
both considered in this paper), not only is there a variable number
of subproblems at each level, but also a potentially large number

of subproblems (and henee a very large number of orderings). This
not only makes it more complicated to try to fix the orderings in
advance, but the large number of orderings means that it is very
likely that simple randomization ensures divergence anyway. The
simple randomization approach avoids all this complexity.

Another possible enhancement is, if some heuristic is available
to choose a "good" order in which to compute subproblems, to use
this heuristic to determine the order of computation in one thread,
and only randomize the others. In this way, the non-randomized
thread will use the heuristic ordering just as in the sequential
case, but will be assisted by having available the results of any
subproblems it requires that may have been computed by the other
(randomized) threads.

3. Lock-free concurrent hash tables

The hash table needed to implement a top-down dynamic
programming approach only requires two operations: insert a (key,
valué) pair, and look up a valué given a key. Once a (key, valué)
pair has been inserted, any further insertions of the same key
must have the same valué (since any computed optimal valué for
a subproblem is the optimal valué, and does not change). Henee,
updates and deletions are not required.

Furthermore, to implement efficiently the dynamic program
ming approach previously described, we require a concurrent hash
table that scales well in the number of threads inserting into and
reading from it. Thus, the use of critical sections is undesirable,
given they require access controlled by locks (mutexes). Also, we
would like our hash table to be not only non-blocking, that is,
an arbitrary delay of one thread cannot halt progress of others
(thereby excluding the use of mutual exclusión), but also meet the
stronger condition of being lock-free. Although lock-freedom has
had several historical definitions, we use the definition of [10], that
"[a] method is lock-free if it guarantees that infinitely often some
method cali finishes in a finite number of steps". [10, p. 60]. That
is, there must be guaranteed system-wide progress.

Various implementations of hash tables are possible, including
sepárate chaining (open hashing) and open addressing (closed
hashing). In a sepárate chaining hash table, each entry contains
the head of a linked list of elements with the same hash valué;
collisions are handled by adding elements to the linked list.
An open addressing hash table stores elements directly in the
table entries, resolving collisions by putting elements in some
other free slot in the table. It was not clear a priori which
implementation would work better for the associative array we
require for parallel dynamic programming. Thus, we experimented
with several implementations in three different processors: AMD
Opteron (Intel IA-64), IBM PowerPC, and UltraSPARC TI.

3.1. Our implementations

In order to implement lock-free data structures and algorithms
efficiently, hardware support in the form of atomic instructions is
required. We only consider here the compare-and-swap (or CAS)
operation, which we will denote as CompareAndSwap, with the
semantics detailed in Fig. 2.

Support for the CompareAndSwap operation dates back to the
IBM S/370 and it is still available on many modern processors
including Intel IA-64 (x86) and Sun SPARC. Processors, like the IBM
PowerPC, that do not support CompareAndSwap, often directly
support Load-Linked and Store-Conditional (LL/SC) instead. Since
CompareAndSwap can be implemented using LL/SC [19], it is
sufficient to focus on CompareAndSwap. Use of CompareAndSwap
can result in the ABA problem, whereby the valué at an address
is changed from a to b and then back to a after another thread,
P has already read a from it. Then thread P can succeed in using

CompareAndSwap(adí¿reíí, expectedval, newval)
atomically:

load véiasjaHiaddress) into oldval
if oldval = expectedval then

store newval at address
return oldval

Fig. 2. Semantics of the CompareAndSwap operation. The new valué newval is only
stored at address if it contained the expected valué expectedval. The valué that was
at address is returned, allowingthe callerto detect failure of the operation, when
expectedval is not returned.

CompareAndSwap on the same address with an expected valué of
a, as if the valué at the address had never changed. This can result
in incorrect semantics if, for example, the valúes are addresses,
and the second use of a is due to reuse of a deleted node in a
list. As we will show later, the ABA problem does not arise in our
implementations.

As we require only insert and lookup, our implementations of
the sepárate chaining and open addressing hash tables are quite
simple.

Sepárate chaining: The lookup operation consists of simply
hashing the key, and comparing the key with each element in the
linked list anchored at the entry for that hash valué. The insert
operation requires the use of the CompareAndSwap operation to
insert the newly allocated element at the head of the list anchored
at the hash valué for the new key; if the head of the list has changed
during the insertion, we must retry it.

This is essentially a simplified versión of the lock-free hash
table described by Michael [20]. As we do not implement the
delete operation, the ABA problem does not arise. To allocate new
cells, our implementation uses the Streamflow scalable locality-
conscious multithreaded allocator [27]. As Streamflow was not
available for SPARC, on this platform we used a simple cellpool
allocator, in which we allocated a large amount of memory at
initialization time, and allocated cells in a lock-free manner by
using the CompareAndSwap operation to advance the "next cell"
pointer for each request.

Since the CompareAndSwap operation is used only on pointers
(rather than the actual key), there is no limit on key size imposed
by the máximum size ofthe operand for this instruction. Functions
to compare keys and to copy keys and valúes can be provided as
callback functions, allowing any data type to be used for keys and
valúes.

If the allocator is lock-free then this hash table is lock-free.
The only operation that could cause it not to be is the insert
operation, which must be retried only if the CompareAndSwap
operation fails (i.e., when another entry with the same hash valué
for the key has been inserted during the operation). But since the
CompareAndSwap operation can only fail because it has succeeded
in another thread, there is global progress and therefore the
algorithm is lock-free.

Open addressing: We made the further simplifying assumption
that the hash table does not need to be resized and simply
allocate a very large (226 entries) hash table at initialization. Henee,
this implementation requires no thread-safe memory allocator
and memory allocation is not required at all during its use,
both simplifying its implementation and removing a possible
impediment to scalability in the number of threads. Each entry
in the hash table is a 64-bit key and a 64-bit valué (thus, a key
is always immediately followed in memory by its valué). We use
linear probing to resolve hash collisions. As with sepárate chaining,
the lookup operation requires no special instructions, but the
insert operation uses the CompareAndSwap operation to ensure
the slot for the key it is about to insert did not have another key
inserted during its operation. The algorithms for the parjnsert and
parjookup operations in the open addressing hash table are shown
in Fig. 3. The essential invariant in this concurrent data structure

parJnsert(fcy,va;«e)
ent <- geLentry(tey)
if ent = NULL then

error-exit("hash table full")
if ent.key = NO-KEY then

if CompareAndSwap(enr.fey, NO-KEY, key)
^ NO-KEY then

return par_insert(fey, value)
ent.value •*— value
return TRUE

par_lookup(fary)
ent <- get_entry(fary)
if ent ^ NULL A ent.value ^ NO-VALUE then

return ent.value
else

return KEY_NOT_FOUND

getentry(fory)
h <- hash(fey)
ent <— hashtable[/i]
probes <— 0
while probes < TABLE-SIZE - 1 A ent.key # key

A ent.key # NOLKEY do
probes *— probes + 1
h «- (h + 1) mod TABLE-SIZE
ent <— hashtable[/i]

if probes > TABLE-SIZE - 1 then
return NULL

else
return ent

Fig. 3. Algorithms forthe parjnsert and parjookup operations on the concurrent
lock-free open addressing hash table.

is that once an entry has changed from the initial empty state
(marked with the NO_KEY constant), to containing a key, the key
field never changes: the entry is forever occupied by that key. The
CompareAndSwap operation ensures that if another thread has
taken the entry during the parjnsert, then this attempt to use it
is abandoned, and we restart the insertion operation. Because the
key value can only change from NO_KEY to some other value, and
never back again, the ABA problem cannot occur with this use of
CompareAndSwap. Note also that (as is typically the case in hash
tables) there can be no duplicate keys in the table; once an entry
has been taken by a key, not only will it never again be empty, but
any insertion of the same key will find that same entry.

Note that the key and the value fields are operated on
separately. This allows a thread to look up a key while another
thread is in the process of inserting that key and, hence, read the
value field before it has been set by the parjnsert function. This
simply results in the parjookup operation finding the NCLVALUE
constant if the key did not previously exist in the table, since all
entries are initialized to have NCLKEY and NCLVALUE in the key
and value fields respectively. This is interpreted as the key not
being found in the table, just as if the parjookup operation had
been serialized to occur prior to the parjnsert operation that is in
progress.

This algorithm is clearly non-blocking; an arbitrary delay of any
thread will not halt the progress of any other threads. We claim
that this open addressing hash table is also lock-free. To see that
this is the case, we need only consider the parjnsert operation,
since parjookup can clearly not be delayed by any other thread.
Consider the case that two threads are simultaneously trying to
insert the same key in an empty entry. Only one of them will
execute CompareAndSwap successfully, as the other will find that
the entry is no longer empty and fail. When this thread retries (the
recursive call), it will find the entry no longer empty and complete.
In general, we need to show that it is not possible for two (or
more) threads to continually delay each other and cause livelock.
To see that this cannot occur, observe that the CompareAndSwap
operation only fails in one thread if it succeeds in another (because
the contentious entry has been changed from NCLKEY to some

key value). Hence, at least one thread has completed its operation
(since if the CompareAndSwap succeeds, that parjnsert operation
will succeed), and the algorithm is lock-free.

Various optimizations are possible when implementing this
algorithm. For example, we do not need to recursively call
parjnsert on failure of the CompareAndSwap operation, but could
instead use a loop and not recompute the hash value for the
key. In the interests of simplicity and clarity we do not show
here or implement such optimizations, but use a straightforward
implementation of the algorithm as shown.

3.2. Evaluation of the time performance of hash tables

We built and tested our two hash tables (separate chaining
and open addressing) on three different processors: AMD Opteron
(Intel IA-64) and IBM PowerPC processors running Linux, and on
the UltraSPARC Tl processor running Solaris. These hash table
implementations used the gcc (version 4.1.2) compiler builtins for
atomic operations, except on Solaris where we used the Sun Studio
12 C compiler and the Solaris (version 5.10) atomic operation
library functions.

For the AMD Opteron processor, we also compared our hash
tables to a publicly available C implementation of a Java non-
blocking data structure library called nbds [21], and the concurrent
hash map with scalable allocator from the Intel Threading Building
Blocks 2.1 (TBB) for Open Source [32]. The latter is unlike all other
implementations in that it is not lock-free, and is in C++ rather
than C. Note that TBB and nbds only work on Intel compatible
processors.

In order to evaluate the time performance of each hash table, we
used a test program that, for 107 uniformly distributed random 64-
bit integer keys, first performs a lookup operation, then, if the key
is not already in the table, performs a lookup on a new random key
(also a 64-bit integer chosen uniformly at random), then inserts the
original key, thereby generating on average twice as many lookup
as insert operations. If the key is already in the table it simply
asserts that the value is the correct one for the key (the values
are inserted as the same as the key to make this correctness test
straightforward). We use this ratio of inserts and lookups in order
to model the dynamic programming usage we have observed in
practice of twice as many lookups as inserts. Note that this ratio
is quite different from those generally cited as typical for hash
tables, such as 90% lookup, 9% insert, 1% delete [10, p. 300]. Thus,
we require a hash table that is efficient for much more frequent
insertions than typical usages (and which does not need to support
a delete operation at all).

On the UltraSPARC Tl platform, Fig. 4 shows that the open
addressing hash table scales quite well in the number of threads,
up to a peak speedup of 32 times for 30 threads (note this is relative
to the baseline sequential implementation of separate chaining,
and even with 1 thread is faster). The separate chaining hash table,
however, scales very poorly, with a peak speedup of less than 4
times, and no significant increase after 8 threads. This result was
achieved with our own trivial cell pool allocator, as described in
Section 3.1, as the Streamflow allocator [27] was not available for
SPARC. We also experimented with the standard m a l l o c O and
the umem_cache_*() object cache allocator [3,4] but found that
the trivial cell pool allocator was faster for this purpose (data not
shown).

On the PowerPC platform, Fig. 5 shows that the separate
chaining and open addressing hash tables achieve similarly good
(linear) speedup. Note that the speedup actually appears to
be superlinear; this is because the baseline uses the standard
library m a l l o c O for the memory allocator, while the lock-free
implementation uses the Streamflow [27] allocator, which gives
better performance for even a single thread on this platform.

open addressing
- o- separate chaining

Fig. 4. Speedup for lock-free open addressing and separate chaining hash tables on
UltraSPARC Tl (SunFire T2000, 1 GHz, 8 cores, 32 total concurrent threads, 16 GB
RAM), 2/3 lookup and 1/3 insert. The baseline (0 threads value) is the separate
chaining hash table implemented with no atomic instructions and compiled and
linked with no threading support, and the standard library malloc () Each test
was repeated 10 times and the average value used to compute the speedup; error
bars show the 95% confidence interval, where this is large enough to show on the
graph scale.

open addressing
separate chaining

Fig. 5. Speedup for lock-free open addressing and separate chaining hash tables
on PowerPC 64-bit (IBM eServer pSeries 650, 1.45 GHz, 8 cores, 16 GB RAM), 2/3
lookup and 1/3 insert. The baseline (0 threads value) is the separate chaining hash
table implemented with no atomic instructions and compiled and linked with no
threading support, and the standard library malloc (). Each test was repeated 10
times and the average value used to compute the speedup; error bars show the 95%
confidence interval, where this is large enough to show on the graph scale.

open addressing
separate chaining
nbds
Intel TBB concurrent_hash_map

0 2 4 6 8
threads

Fig. 6. Speedup of different concurrent hash table implementations on AMD
Quad Core Opteron (2.3 GHz, 2 processors, total 8 cores, 32 GB RAM), 2/3 lookup
and 1/3 insert. The baseline (0 threads value) is a simple separate chaining hash
table implemented with no atomic instructions and compiled and linked with no
threading support, and the standard library malloc (). Each test was repeated 10
times and the average value used to compute the speedup; error bars show the 95%
confidence interval, where this is large enough to show on the graph scale.

Hence, even the multithreaded implementation with only one
thread is faster than the baseline.

On the AMD Opteron platform, Fig. 6 shows the speedup of
several concurrent hash table implementations. Speedup for the
existing publicly available implementations is disappointing, with
both the Intel TBB library (which uses locks) and nbds achieving
no significant speedup with our high-insertion workload. Both the
separate chaining and open addressing hash tables achieve quite

good speedup on this platform, the former having a peak speedup
of 5.7 times and the latter 6.4 times.

The results detailed in this section lead us to choose the lock-
free open addressing hash table for implementing the parallel
dynamic programming algorithm, since the same, quite simple,
code achieves good scalable speedup on the three systems
tested, and does not require the added complication of a
scalable multithreaded allocator. The separate chaining hash table
performs slightly better than the open addressing hash table on
the PowerPC, but significantly worse on the other two platforms,
although if Streamflow were available on the SPARC platform it
may well change the results on that platform significantly. We
note that the UltraSPARC Tl is particularly suitable for running
scalable multithreading applications as it was designed specifically
for scalable multithreaded performance rather than for optimal
performance for single threads [29].

4. Experiments for parallelizing DP

We now show the results of using our method to parallelize the
dynamic programming solutions to four very different problems.
These dynamic programs were implemented in C with the same
compilers described in Section 3.2. We note, however, that in
testing the hash table implementation, as described in Section 3.2,
we used uniformly randomly distributed keys. It is well known
(see, e.g., Askitis [1] and citations therein) that uniform distribution
of hash values is important in the performance of hash tables, in
order to prevent too-frequent collisions. For the tests described
in Section 3.2, the hash function was unimportant, since the keys
were generated from a uniform random distribution. However,
in implementing dynamic programs, this is certainly not the
case. To obtain a reasonably uniform distribution of hash values,
we have used a hash function that combines bit shifts and
multiplication [13].

Table 1 shows the total elapsed times of the baseline (no
threading) implementation for all of the problems on each of the
platforms tested, in order to give some idea of the problem sizes
and relative speed of the platforms for single core execution. These
times are the sums of the times for each of the individual problem
instances (as detailed for each problem in the following sections).
The speedup calculations are relative to the baseline consisting
of the mean of all the individual problem instances. Because our
algorithm makes use of randomization, it is possible that there
could be significant variation in the execution times over different
runs of the same problem instance. Therefore, as well as averaging
over the problem instances, we ran some of the tests with 10
iterations of each of the sets of problem instances, and found the
standard deviation to be small enough to justify presenting the
speedup figures to two decimal places.

4.1. Knapsack

We implemented in C the knapsack dynamic program formu
lation given in Section 2 using the top-down recursive approach.
We then parallelized this program using randomization and ran it
using our lock-free open addressing hash table described in Sec
tion 3.1. We used the test generator gen2.c used in Martello
et al. [17] and available from http://www.diku.dk/~pisinger/gen2x
to create 100 instances each of uncorrelated, weakly corre
lated, strongly correlated, inverse strongly correlated and almost
strongly correlated knapsack problems, each with 500 items and
weights in the interval [1, 500].

On the UltraSPARC Tl platform, Fig. 7 and Table 2 show that
randomizing the subproblem ordering provides a speedup of 8.97
times (for 31 threads) for the knapsack dynamic program. Fig. 10
sheds some light on why this does not achieve the speedup of up
to 19 times achieved in Fig. 4 for simple insertions and lookups:

http://www.diku.dk/~pisinger/gen2x

Table 1
Total elapsed times forthe baseline for each of the problems on each of the platforms tested.

UltraSPARC PowerPC Opteron

Knapsack
Shortest paths
RNA struct, alignminent
Open stacks

4 h 12 min 25 s
11 h37 min 46 s
1 h 12 min 34 s
Oh53 min45s

2 h 08 min 43 s
9 h 42 min 37 s
Oh30 min 22s
Oh 24 min01s

0 h44 min 32 s
2 h 12 min 44 s
Oh 10 min 04 s
Oh07 min47s

-•— knapsack
- 0- knapsack (no rand)
-•- shortest paths

-<&• - shortest paths (no rand)
RNA struct, alignment
RNA struct, alignment (no rand)

- • - open stacks (tiebreak)
- a - open stacks (lull)
-B- - open stacks (no rand

10 15 20
threads

25 30

Fig. 7. Speedup for parallelized dynamic programs using the lock-free open
addressing hash table on UltraSPARC Tl. The baseline (0 threads value) for open
stacks is the implementation described in Garcia de la Banda and Stuckey [8],
and for the other problems are the same implementations as the parallelized
versions, but without randomization of subproblem orderings and using a simple
(not lock-free) hash table implementation. All baseline implementations use no
atomic instructions and are compiled and linked with no threading support, and
the standard library m a l l o c () . Implementations labelled with "(no rand)" refer
to implementations where no randomization is used, so all threads solve the same
subproblems in the same order.

•— knapsack
a- knapsack (no rand)
3- shortest paths
&•- shortest paths (no rand)

RNA struct alignment
RNA struct alignment (no rand)
open stacks (tiebreak)

a- open stacks (lull)
a- open stacks (no rand)

0 2 4 6 8
threads

Fig. 8. Speedup for parallelized dynamic programs using the lock-free open
addressing hash table on IBM PowerPC (8 cores). The baseline (0 threads value) for
open stacks is the implementation described in Garcia de la Banda and Stuckey [8],
and for the other problems are the same implementations as the parallelized
versions, but without randomization of subproblem orderings and using a simple
(not lock-free) hash table implementation. All baseline implementations use no
atomic instructions and are compiled and linked with no threading support, and
the standard library m a l l o c O .

Table 2
Maximum speedup for parallelized dynamic programs using randomization and the
lock-free open addressing hash table on UltraSPARC Tl.

Problem

Knapsack
Shortest paths
RNA struct, alignment
Open stacks (tiebreak)
Open stacks (full)

Speedup

8.97
9.88
9.17
6.96

10.83

Threads

31
32
31
27
32

The total number of computations increases in approximately a
straight line from 1.03 x 1010 for a single thread to 1.56 x 1010

for 32 threads. Thus, at 32 threads, 5.305 x 109 more subproblems
are computed in total, a 51% increase in total computations.

This shows that we cannot achieve indefinite linear scalability
with our technique, even if we had a perfectly linearly scalable

- knapsack
knapsack (no rand)
shortest paths
shortest paths (no rand)
RNA struct, alignment
RNA struct, alignment (no rand)
open stacks (tiebreak)
open stacks (lull)
open stacks (no rand)

0 2 4 6 8
threads

Fig. 9. Speedup for parallelized dynamic programs using the lock-free open ad
dressing hash table on AMD Quad Core Opteron (2.3 GHz, 2 processors, total 8 cores,
32 GB RAM), The baseline (0 threads value) for open stacks is the implementation
described in [8], and forthe other problems are the same implementations as the
parallelized versions, but without randomization of subproblem orderings and us
ing a simple (not lock-free) hash table implementation. All baseline implementa
tions use no atomic instructions and are compiled and linked with no threading
support, and the standard library m a l l o c () .

Table 3
Maximum speedup for parallelized dynamic programs using randomization and the
lock-free open addressing hash table on IBM PowerPC (8 cores).

Problem

Knapsack
Shortest paths
RNA struct, alignment
Open stacks (tiebreak)
Open stacks (full)

Speedup

3.11
7.68
5.64
3.81
5.57

Threads

8
8
8
6
8

Table 4
Maximum speedup for parallelized dynamic programs using randomization and
the lock-free open addressing hash table on AMD Quad Core Opteron (2.3 GHz,
2 processors, total 8 cores, 32 GB RAM).

Problem

Knapsack
Shortest paths
RNA struct, alignment
Open stacks (tiebreak)
Open stacks (full)

Speedup

3.21
4.81
4.40
3.95
4.34

Threads

8
8
8
8
8

lock-free concurrent hash table. As we increase the number of
threads, we inevitably recompute some subproblems, when two
or more threads compute the same subproblem simultaneously.
Hence, although we have more threads exploring the solution
space, we also have in aggregate more computations than we
would have with fewer threads.

On the PowerPC platform, Fig. 8 and Table 3 show that a
speedup of 3.1 times is achieved for 8 threads, and for the AMD
Opteron platform, Fig. 9 and Table 4 show a speedup of 3.2 times for
8 threads (as opposed to 4.2 times for 8 threads in the UltraSPARC
Tl). We note that the speedup appears to be nearly perfectly linear
in Fig. 8, since the test system only has 8 cores. However, as seen
for the UltraSPARC Tl platform (Fig. 7), and to a lesser extent (for
the last data point only, for 8 threads) in Fig. 9, it is likely that
the speedup will level out; its rate of increase will decline after 8
threads.

We also implemented the technique, mentioned in Section 2,
of fixing the subproblem orderings so that each of n threads is

Fig. 10. Total computations (number of times the parjnsert function is called, h)
for the knapsack dynamic program using the lock-free open addressing hash table
on UltraSPARC Tl.

knapsack (with randomization)
shortest paths (with randomization)
RNA structural alignment (with randomization)
open stacks (tiebreak randomization)
open stacks (lull randomization)

10 15 20
threads

Fig. 11. Increase in total computations (number of times the parjnsert function
is called, h) relative to the number for a single thread (i.e., h/h-[) for the dynamic
programs using the lock-free open addressing hash table on UltraSPARC Tl. Straight
lines were fitted to the data points by linear least squares regression with the lm
function in R.

guaranteed to take a different path for the first log2(n) levels, but
found that it did not improve the results (data not shown).

4.2. Shortest paths

The shortest path between two nodes i and j in a directed graph
can be found with the dynamic programming Floyd-Warshall
algorithm [7,33]. This algorithm is based on the function s(i,j, k),
which returns the length of the shortest path from node i to node j
using only 1 , . . . , k as intermediate nodes. This function is defined
using dynamic programming as follows:

s(i,j,k)

where dy is the weight (distance) of the directed edge from i to j .
Once k reaches the total number of nodes in the graph, say n, the
value returned by s(i,j, n) represents the optimal solution to the
initial problem.

As before, we implemented this dynamic program in C using
the recursive top-down approach, parallelized it using random
ization, and ran it using our lock-free open addressing hash table.
To randomize we randomly choose, with equal probability, one of
the 3! = 6 possible orderings of the three subproblems in the re
currence relation just described. We derived the test data for this
example from the 9th DIMACS Implementation Challenge — Short
est Paths data from http://www.dis.uniromal.it/~challenge9/. We
chose three 500 node slices ofthe New York City dataset, with 100
queries per instance.

Figs. 7-9 and Tables 2-4 show that the resulting program
achieves a speedup of 9.88 times with 32 threads on the Ultra
SPARC Tl platform, 7.68 times with 8 threads on the IBM PowerPC

o,
da,
min{s(i, j , k — 1),

s(i,k, k - 1) +s(k,j, k --1)}

if i = j
if fe = 0

otherwise

platform, and 4.81 times with 8 threads on the AMD Opteron plat
form.

4.3. RNA base pairing probability matrix alignment

Finding an alignment of two RNA sequences that takes into ac
count both the sequences and the secondary structures into which
they fold, is another problem with a dynamic programming solu
tion [26]. If we are given the base pairing probability matrices [18]
for two RNA sequences, then S(i,j, k, I), the best score of match
ing subsequences i..j in sequence A and k..l in sequence B can be
computed by the following dynamic program [11]:

S(i,j, k, I) = max

S(i + \,j,k,l) + y,
S(i,j,k + \,l) + y,
S(i + 1,j,k+1,l)+cr(A,,Bk),
max S

h<j,tj<l
(i,h,k,q)+S(h + \,j,q + \,l)

SM(i,j, k, I) = S(i + 1, j - 1, k + 1, I - 1)
+ Vv

A + Vk
B, + T(Ai,Aj,Bk,Bl).

In the above, S(i,j, k, I) is the best score of matching
subsequences i..j in sequenced and k..l in sequence B, y < 0 is the
gap penalty, a and x are score functions for unpaired bases and
base pairs, respectively, and WA and WB are the base pairing log
probability matrices for sequence A and sequence B, respectively.

LocARNA [34] is a recent implementation of this algorithm
that significantly improves efficiency by carefully rearranging the
dynamic programing equations, and by providing an efficient
bottom-up implementation of the dynamic program. Its time
complexity is effectively quadratic due to the filtering out of base
pairs with probability less than a threshold. The sparseness ofthe
probability matrices makes the number of remaining nonzero base
pair probabilities effectively linear [34].

As before, we implemented the above dynamic program in C
using the recursive top-down approach, parallelized it using ran
domization, and ran it using our lock-free open addressing hash
table. To randomize we ordered the subproblem computations ac
cording to a random permutation ofthe entire list of subproblems
intheS(-) andSM(-) computation.

We used the probability threshold as described by Will
et al. [34] to reduce the computational complexity ofthe problem,
and, as does LocARNA [34], normalized the base pairing log
probabilities and converted them to integers in order to avoid
floating point computations. This is particularly important on the
UltraSPARC Tl processor, since it has a single floating point unit per
chip, shared by all cores [29], which limits scalability of programs
using floating point operations.

We run the parallelized program with the BRAliBase II [9]
pairwise RNA structural alignment benchmark data set, which
consists of 118 pairs of RNA sequences (from a total of 78 individual
sequences) to be aligned. We used the RNAfold program in
the Vienna RNA Package [40,12] to generate the base pairing
probability matrix for each sequence, which is then processed by a
script into a form used as input to our program.

Figs. 7-9 and Tables 2-4 show that the top-down implemen
tation with the concurrent lock-free open addressing hash table
achieves a speedup of 9.17 times with 31 threads on the Ultra
SPARC Tl platform, 5.64 times with 8 threads on the IBM PowerPC
platform, and 4.40 times with 8 threads on the AMD Opteron plat
form for this implementation.

We note that this problem is different from the ones previously
shown, in that it is perfectly feasible to compute and store
every possible subproblem (i.e., use the bottom-up technique) for
realistic problem instances. Hence, a hash table is not necessary.
Furthermore, a careful arrangement of the computation order
and efficient implementation ofthe bottom-up technique, such as

http://www.dis.uniromal.it/~challenge9/

CD -

0 5 10 15 20 25 30

threads

Fig. 12. Speedup for parallelized RNA base pairing matrix alignment using an array
to store computed values on the UltraSPARC Tl (32 cores). The baseline (0 threads
value) is a top-down implementation of the dynamic program using an array to
store computed values, with no randomization, and compiled and linked with no
threading support. The dashed horizontal line represents the speedup relative to the
same baseline of a bottom-up implementation of the dynamic program, showing
that our parallelized implementation is faster than the bottom-up implementation
on this platform when 3 or more threads are used.

o _ .-^
CO ,s*

LO _ &/

c\i ,/
Q. ®/
3 O /

Q. LO /
CO ^ j - /

q _ //

d 1 **
0 2 4 6 8

threads

Fig. 13. Speedup for parallelized RNA base pairing matrix alignment using an array
to store computed values on the IBM PowerPC (8 cores). The baseline (0 threads
value) is a top-down implementation of the dynamic program using an array to
store computed values, with no randomization, and compiled and linked with no
threading support. The dashed horizontal line represents the speedup relative to the
same baseline of a bottom-up implementation of the dynamic program, showing
that our parallelized implementation is faster than the bottom-up implementation
on this platform when 5 or more threads are used.

LocARNA [34], is considerably faster than the top-down technique
(certainly for a single thread). Therefore, we also implemented a
bottom-up version of the algorithm, as well as a top-down version
that uses an array rather than the concurrent hash table to store
results. Fig. 12 shows that the top-down parallelization using an
array rather than a hash table achieves a maximum speedup of
6.50 times on the UltraSPARC Tl processor and is faster than the
bottom-up implementation for 3 or more threads. Figs. 13 and 14
show that the corresponding results on the PowerPC and AMD
Opteron processors respectively are a maximum speedup of 3.31
times and 2.78 times, and that on the IBM PowerPC and AMD
Opteron, 5 and 4 or more threads.respectively, are required in
order to be faster than the bottom-up implementation.

This example demonstrates that our technique can be used to
accelerate any top-down implementation of a dynamic program
(whether storing the results in a hash table or an array),
without having to find an efficient ordering of the (bottom-up)
computation.

4.4. Minimization of Open Stacks

The Minimization of Open Stacks Problem [38,39] aims at
finding a sequence in which to manufacture a set of products so
that the maximum number of active customers is minimized. A
client c is said to be active from the time the first product ordered
by c starts to be manufactured, until the last product ordered by c

0 2 4 6 8
threads

Fig. 14. Speedup for parallelized RNA base pairing matrix alignment using an array
to store computed values on the AMD Opteron (8 cores). The baseline (0 threads
value) is a top-down implementation of the dynamic program using an array to
store computed values, with no randomization, and compiled and linked with no
threading support. The dashed horizontal line represents the speedup relative to the
same baseline of a bottom-up implementation of the dynamic program, showing
that our parallelized implementation is faster than the bottom-up implementation
on this platform when 4 or more threads are used.

is manufactured. Traditionally, the already manufactured products
ordered by a client are stored in a stack, until the order was
completed and the stack was closed. Thus, the number of active
customers corresponds to the number of open stacks (thus the
name).

A highly effective dynamic programming solution to this
problem is described by Garcia de la Banda and Stuckey [8] in terms
of a set P of products, a set C of customers, a function c(p) that
returns the set of customers who have ordered product p e P, and
its extension c(S) = UpeS c(p) which returns the set of customers
ordering products from the set S c P. If A c P is the set of all
products scheduled to be manufactured after product p, then the
set of active customers at the time p is manufactured is

a(p,A) = c(p) U (c(A) nc(P-A- {p}))

that is, those who ordered p, plus those whose orders include some
products scheduled after p and some scheduled before p. Let S c
P denote the set of products that still need to be manufactured
and let stacl<sP(S) be the minimum number of stacks required
to schedule the products in S. Then, the dynamic programming
recurrence relation to compute stacl<sP(S) is:

minmax{a(p, S — {p}), stacl<sP(S — {p})}
pes

which computes, for each product p, the maximum number of open
stacks needed if p was scheduled first, and then takes the minimum
of this over all products.

In the dynamic programming formulation of the open stacks
problem described by Garcia de la Banda and Stuckey [8], the
order in which the products are tried significantly affects the
amount of work performed, and a heuristic is used which selects
the product with the least number of active customers (its pseudo
code is given in Fig. 15). We demonstrate two different approaches
to randomization. Our first approach, stacks_tiebreak, retains the
heuristic and only introduces randomization for breaking ties. This
is achieved by changing the third line of the while loop in Fig. 15
to

p <r- RandomElementOf(Q).

Our second approach, stacks_full, discards the heuristic and
randomly selects any product that has the same or fewer number of
active customers than the currently known minimum. In addition
to the change above, the 2nd line in the while loop is replaced by

Q <-{p | p € 7\ a(p, S - {p}) <min}.

We used the same C code described in Garcia de la Banda
and Stuckey [8], adding the randomization techniques just

stacks^, L,!7)
if 5 = 0 then

return 0
min <- lookup(S)
if min j£ KEYJMOT-FOUND then

return min
min<-U + l

if 3p S S.c(j>) C c(P - 5) n c(S) then
return stacks(S - {p}, L, U)

while min > L A T ^ 0 do
minjiow <— min{a(p, 5 — {p}) | p G T}
Q «— {p | p 6 T, a(p, S — {p}) =minjiow }
p <- FirstElementOf(Q)
T^T-{p}
if a(p, S — {p}) > min then

break
sp <- max{o(p, S - {p}), Stacks^ - {p}, L, U)}
if sp < min then

min <— sp
insert(S',min)
return min

Fig. 15. The A* dynamic programming algorithm forthe open stacks problem [8].
stacks(S, I, U) returns the minimal number of open stacks required for scheduling
the set of products S given a lower bound on the number of stacks I and an upper
bound U. A heuristic choice of the order in which to try products is made by selecting
a product p which results in the least number of active customers if scheduled
immediately.

described, and replacing the simple separate chaining hash table
of Garcia de la Banda and Stuckey [8] with our lock-free open
addressing hash table described in Section 3.1. We use the same
problem instances from the Constraint Modelling Challenge 2005
(http://www.dcs.st-and.ac.uk/~ipg/challenge), omitting the two
instances that exceeded the search limit in Garcia de la Banda and
Stuckey [8], as well as a single instance that requires a set of more
than 64 products after preprocessing (since their implementation
represents the product set as a bit set, and is currently restricted to
a single (64 bit) machine word as the hash table key).

Figs. 7-9 and Tables 2-4 show that the tiebreak randomization
achieves a speedup of up to 6.96 times (for 27 threads) on the Ultra
SPARC Tl platform, 3.81 times (for 6 threads) on the PowerPC plat
form, and 3.95 (for 8 threads) on the AMD Opteron platform. For
the full randomization (stacks_full) the corresponding speedups
are 10.83,5.57, and 4.34 times for 32,8 and 8 threads, respectively.

Note that, for comparison, not randomizing the choice so that
each thread performs the same computation results in no speedup
and, in fact, the addition of more threads causes a slight slowdown.

Just as for the knapsack problem, we can see from Fig. 11 that
increasing the number of threads also linearly increases the total
number of subproblems computed. At the maximum value of 32
threads, this is a 51% increase for knapsack and a 43% increase
for open stacks with the tiebreak randomization, but only a 3.7%
increase for open stacks with the full randomization.

The difference in speedup between stacks_tiebreak and
stacks_full illustrates the importance of ensuring that the path
threads take through the set of subproblems diverges as much as
possible. In the extreme case of no randomization (so that each
thread computes exactly the same subproblems in exactly the
same order), we clearly obtain no speedup. In general, the more
divergent between threads that the path through the set of pos
sible subproblems of a particular dynamic program becomes, the
better the speedup will be. This is because more divergent paths
cause a slower growth (lesser slope of the h/h\ lines as plotted
in Fig. 11) in the number of duplicated computations (when two
more more threads compute the same subproblem). In the case of
the open stacks problem, this reduction in duplicated computation
more than makes up for the loss of the heuristic which selects the
product with the least number of open stacks if selected first. We
also implemented the technique, mentioned in Section 2, of having

one thread always use the heuristic ordering rather than randomiz
ing, but the results are not significantly improved in this case (data
not shown).

5. Conclusions

We have described a technique for parallelizing dynamic
programs on shared memory multiprocessors, and demonstrated
its application to dynamic programming formulations of the well-
known knapsack and shortest paths problems, as well as the
bioinformatics problem of RNA structural alignment, and the
problem of minimizing the maximum number of open stacks. Our
technique is applicable to any dynamic program, since it operates
on the top-down (i.e., recursive) implementation of the dynamic
program, which is a direct implementation of the recurrence
relation (Bellman equation) expression of the problem. This is
in contrast to previous work on parallelizing dynamic programs,
which focuses on vectorizing the operations in filling in the
dynamic programming matrix in the bottom-up technique.

Much greater speedups (orders of magnitude) can be achieved
for specific dynamic programming problems by careful analysis
of the problem structure and properties of optimal solutions, in
order to apply, for example, bounding techniques. Although the
parallelization technique we have described results in much more
modest speedups, it can be applied immediately to any dynamic
program, without the need for further analysis.

For dynamic programs that are too large to implement in the
bottom-up manner (filling in every entry of a dynamic program
ming matrix), such as open stacks, vectorization approaches are
inapplicable and a method, such as the one presented here, that is
applicable to the top-down implementation is required. We have
shown a speedup greater than 10 times (for 32 threads) by applying
this method to a state of the art dynamic programming algorithm
for the minimization of the maximum number of open stacks prob
lem.

For problems that can be practically implemented with the
bottom-up technique, such as sequence alignment and RNA
structure prediction and alignment, vectorization techniques
have been successful. However, these techniques require careful
analysis of the data dependencies in the particular problem
being parallelized and result in increased complexity of the
implementation. Our method, in contrast, can be applied directly
to a simple implementation of the recurrence relation defining
the problem as a recursive function, without any analysis of the
particular problem. In these cases an array can be used to store
results, without even the need for a lock-free hash table.

In order to simplify our algorithm and implementation we
made the assumption that dynamic resizing of the hash table
is unnecessary, and simply allocated a very large hash table at
initialization. This is clearly wasteful for dynamic programming
problem instances that do not require a large number of entries.
A more sophisticated implementation would use a dynamically
resizable lock-free hash table, such as that provided by split-
ordered lists [28]. Further experiments would have to be carried
out to determine if the increase in complexity and use of
indirection (resulting in reduced cache efficiency) is a winning
trade-off for the advantage of not allocating unnecessarily large
amounts of memory.

Acknowledgments

This research made use of the Victorian Partnership for
Advanced Computing HPC facility and support services. The first
author is funded by an Australian Postgraduate Award. NICTA
is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT

http://www.dcs.st-and.ac.uk/~ipg/challenge

848

Centre of Excellence Program. The fourth author is funded in part
by Spanish Ministry of Science project TIN-2008-05624 DOVES and
CM project S-0505/TIC/0407 PROMESAS. IMDEA is funded by the
Madrid Regional Government (CM).

References

N. Askitis, Fast and compact hash tables for integer keys, in: Proceedings
of the Thirty-Second Australasian Computer Science Conference, ACSC 2009,
Australian Computer Society, 2009, pp. 101-110.
R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New
Jersey, 1957.
J. Bonwick, The slab allocator: An object-caching kernel memory allocator, in:
Proceedings of the Summer 1994 USENIX Conference, 1994, pp. 87-98.
J. Bonwick, Magazines and Vmem: Extendingthe slab allocator tomany CPUs
and arbitrary resources, in: Proceedings of the 2001 USENIX Annual Technical
Conference, 2001, pp. 15-34.
R.A. Chowdhury, V. Ramachandran, Cache-efficient dynamic programming al-
gorithms for multicores, in: Proceedings of the Twentieth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, ACM, 2008, pp. 207-216.
M. Farrar, Striped Smith-Waterman speeds datábase searches six times over
otherSIMD implementations, Bioinformatics 23 (2) (2007) 156-161.
R.W. Floyd, Algorithm 97: Shortest path, Communications of the ACM 5 (6)
(1962)345.
M. Garcia de la Banda, P.J. Stuckey, Dynamic programming to minimize the
máximum number of open stacks, INFORMS Journal on Computing 19 (4)
(2007)606-617.
P.P. Gardner, A. Wilm, S. Washietl, A benchmark of múltiple sequence
alignment programs upon structural RNAs, Nucleic Acids Research 33 (8)
(2005)2433-2439.
M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Morgan
Kaufmann, Burlington MA, USA, 2008.
I.L. Hofacker, S.H.F. Bernhart, P.F. Stadler, Alignment of RNA base pairing
probability matrices, Bioinformatics 20 (14) (2004) 2222-2227.
I.L. Hofacker, W. Fontana, P.F. Stadler, LS. Bonhoeffer, M. Tacker, P. Schuster,
Fast folding and comparison of RNA secondary structures, Monatshefte für
Chemie 125 (1994) 167-188.
http://www.concentric.net/~Ttwang/tech/inthash.htm, 2007.
W. Liu, B. Schmidt, G. Voss, W. Müller-Wittig, Streaming algorithms for
biological sequence alignment on GPUs, IEEE Transactions on Parallel and
Distributed Systems 18 (9) (2007) 1270-1281.
R.B. Lyngso, M. Zuker, C.N.S. Pedersen, Fast evaluation of internal loops in RNA
secondary structure prediction, Bioinformatics 15 (6) (1999) 440-445.
S.A. Manavski, G. Valle, CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics 9
(Suppl2)(2008)S10.
S. Martello, D. Pisinger, P. Toth, Dynamic programming and strong bounds for
the 0-1 knapsack problem, Management Science 45 (3) (1999) 414-424.
J.S. McCaskill, The equilibrium partition function and base pair binding
probabilities for RNA secondary structure, Biopolymers 29 (1990) 1105-1119.
M.M. Michael, Scalable lock-free dynamic memory allocation, in: Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, ACM, 2004, pp. 35-46.
M.M. Michael, High performance dynamic lock-free hash tables and list-based
sets, in: Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, ACM, 2002, pp. 73-82.
http ://code.goog!e.com/p/nbds/, 2009.
S.B. Needleman, C.D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence oftwo proteins, J. Mol. Biol. 48 (1970)
443-453.
T.F. Oliver, B. Schmidt, D.L. Maskell, Reconfigurable Architectures for Bio-
Sequence Datábase Scanning on FPGAs, IEEE Transactions on Circuits and
Systems II 52(12) (2005) 851-855.
J. Puchinger, P.J. Stuckey, Automating branch-and-bound for dynamic
programs, in: Proceedings of the 2008 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, ACM, 2008,
pp. 81-89.
T. Rognes, E. Seeberg, Six-fold speed-up of Smith-Waterman sequence
datábase searches using parallel processing on common microprocessors,
Bioinformatics 16 (8) (2000) 699-706.
D. Sankoff, Simultaneous solution of the RNA folding, alignment and
protosequence problems, SIAM Journal on Applied Mathematics 45 (5) (1985)
810-825.
S. Schneider, C.D. Antonopoulos, D.S. Nikolopoulos, Scalable locality-conscious
multithreaded memory allocation, in: Proceedings of the 5th International
Symposium on Memory Management, ISMM '06, ACM, Ottawa, Canadá, 2006,
pp. 84-94.
O. Shalev, N. Shavit, Split-ordered lists: Lock-free extensible hash tables,
Journal of the Association of Computing Machinery 53 (3) (2006) 379-405.
D. Sheahan, Developing and Tuning Applications on UltraSPARC TI chip
Multithreading Systems, 1.2 ed., Sun Microsystems, 2007,
http://www.sun.com/blueprints/1205/819-5144.pdf.
T.F. Smith, M.S. Waterman, Identification of Common Molecular Subse-
quences.J. Mol. Biol. 147 (1981) 195-197.

[31] G. Tan, N. Sun, G.R. Gao, A parallel dynamic programming algorithm on a multi-
core architecture, in: Proceedings of the Nineteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, ACM, 2007, pp. 135-144.

[32] http://www.threadingbuiIdingblocks.org/, 2009.
[33] S. Warshall, A theorem on boolean matrices, Journal of the Association of

Computing Machinery 9 (1) (1962) 11-12.
[34] S Will, K. Reiche, I.L. Hofacker, P.F. Stadler, R. Backofen, Inferring noncoding

RNA families and classes by means of genome-scale structure-based
clustering, PLoS Computational Biology 3 (4) (2007) e65.

[35] A. Wirawan, C.K. Kwoh, N.T. Hieu, B. Schmidt, CBESW: Sequence alignment on
the PlayStation 3, BMC Bioinformatics 9 (2008) 377.

[36] A. Wozniak, Using video-oriented instructions to speed up sequence
comparison, CABIOS 13 (2) (1997) 145-150.

[37] F. Xia, Y. Dou, X. Zhou, X. Yang, J. Xu, Y. Zhang, Fine-grained parallel
RNAalifoId algorithm for RNA secondary structure prediction on FPGA, BMC
Bioinformatics 10 (Suppl. 1) (2009) S37.

[38] B.J. Yuen, Heuristics for sequencing cutting patterns, European Journal of
Operational Research 55 (1991) 183-190.

[39] B.J. Yuen, ICV. Richardson, Establishingthe optimality of sequencing heuristics
for cutting stock problems, European Journal of Operational Research 84
(1995)590-598.

[40] M. Zuker, P. Stiegler, Optimal computer folding of large RNA sequences using
thermodynamics and auxilliary information, Nucleic Acids Research 9 (1)
(1981) 133-148.

http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.sun.com/blueprints/1205/819-5144.pdf
http://www.threadingbuiIdingblocks.org/

