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Abstract  

Exponential random graph models (ERGMs) are a well-established family of 

statistical models for analyzing social networks. Computational complexity has so 

far limited the appeal of ERGMs for the analysis of large social networks. 

Efficient computational methods are highly desirable in order to extend the 

empirical scope of ERGMs. In this paper we report results of a research project on 

the development of snowball sampling methods for ERGMs. We propose an 

auxiliary parameter Markov chain Monte Carlo (MCMC) algorithm for sampling 

from the relevant probability distributions. The method is designed to decrease the 

number of allowed network states without worsening the mixing of the Markov 

chains, and suggests a new approach for the developments of MCMC samplers for 

ERGMs. We demonstrate the method on both simulated and actual (empirical) 

network data and show that it reduces CPU time for parameter estimation by an 

order of magnitude compared to current MCMC methods. 
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Introduction 

One way to think about a social network is in terms of a set of nodes 

representing social agents (e.g. individuals, groups, or organizations), and a set of 

social ties recording the presence of a relation among these agents (e.g. kinship, 

friendship, or economic exchange) [1-2]. The list of disciplines where the analysis 

of social networks has opened new research possibilities includes economics [3], 

sociology [4], political sciences [5], international relations [6], medicine [7], and 

public health [8-9]. Models for social networks have also attracted considerable 

attention among physicists [10-12], and are inspiring the development of new 

interdisciplinary perspectives [13]. The diffusion of social network analysis across 

disciplinary boundaries has stimulated considerable innovation in the area of 

statistical modeling [14]. 

Information about networks is often obtained by recording the presence or 

absence of a network tie (edges) for every pair of actors (nodes). The resulting 

network data are presented in form of graph. Exponential random graph models 

(ERGMs) are well-established models for social networks [15-17]. ERGMs may 

be defined as follows. Let xij be a tie variable, xij =1 if a tie exists between nodes i 

and j and xij=0 if there is no tie between these nodes. The model assigns a 

probability to the graph of the form: 

1
Pr( ) exp ( )A A

A

X x z x
k

 
   

 
 , (1) 

where X = [Xij] is a 0-1 matrix of tie variables and x is a realization of X, A is a 

configuration of ties that specifies a type of model interaction (detailed examples 

are given in Section 2), zA(x) is the number of such configurations in the network 

(network statistics), A  is the corresponding model parameter, k is a normalizing 

constant included to ensure that (1) is a probability distribution, 

exp ( )A A

X A

k z x
 

  
 

  ,  (2) 

with the summation over all the possible network states. The model defined in (1) 

involves a general distribution form. In order to define a specific ERGM one 

should define the set of all configurations A included in model (1). 
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After the ERGM is defined, the objective of inference is to find values of 

ERGM parameters such that  

( ) obsE X x  ,  (3) 

where ( )E X is the expected network given the set of ERGM parameters  .and 

obsx is the observed network we want to study. In order to obtain reliable 

estimates of ERGM parameters the following computational methods have been 

used: Markov Chain Monte Carlo Maximum Likelihood estimation using Geyer-

Thompson [18] and Robbins-Monro stochastic approximation [19] approaches 

and Bayesian analysis [20-22]. The Geyer-Thompson approach is used in the 

Statnet package [23] while the Robbins-Monro method is used in the PNet 

package for ERGM estimation [24]. In all these methods MCMC is used for 

generation of ( )E X . ERGM estimation is a computationally expensive 

procedure. Given the fact that computationally the most expensive part for ERGM 

estimation is the procedure for regenerating the expected network ( )E X , an

efficient MCMC method for sampling from distribution (1) would be clearly 

useful. 

Efficient MCMC samplers require less CPU time in order to reach the 

invariant probability density. The efficiency of an MCMC sampler is given by 

two factors: mixing of Markov chain [25] and computational cost. While some 

advanced MCMC samplers improve mixing properties considerably, they require 

intensive computations and as a result may be less efficient than simpler MCMC 

samplers. A brief review of popular MCMC samplers and comparison of their 

efficiency is given in [26]. 

Two general MCMC approaches are typically used to sample from binary 

distributions: Metropolis-Hastings [27] algorithms and replica exchange [28]. 

Many popular and efficient MCMC samplers may be considered as special cases 

of these general approaches. Many MCMC samplers were developed for 

modeling distribution of spins on crystalline lattices [29-30]. The Wang-Landau 

algorithm was recently applied for some particular forms of ERGMs [31] and was 

found very useful in the case of phase transitions. The MCMC samplers for 

generic binary distribution are limited. Recently Hamiltonian MCMC was 

proposed for binary distributions [32]. In order to apply the Hamiltonian 
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approach, binary variables are mapped onto continuous variables and it is shown 

that sampling from the resulting continuous distribution may be more efficient 

than sampling from the original binary distribution.  

In this manuscript we suggest a new auxiliary parameter MCMC algorithm 

for ERGMs. The manuscript is organized as follows: Model details are given in 

Section 2, in Section 3 the relevant existing MCMC samplers for ERGMs are 

reviewed, in Section 4 a new MCMC sampler is suggested, and in Section 5 the 

results of ERGM estimation with different MCMC samplers are compared in 

terms of their efficiency. 

2. Model interaction 

Different types of statistics zA(x) may be required for different networks. Here, for 

simplicity, we restrict the discussion to undirected networks (xij=xji.) and the 

corresponding statistics. One of the statistics used for ERGMs is simply a count of 

all the ties (edges) contained in the network x. Denote it by L(x), 

,

( ) ( )
L ij

i j

z x L x x  . (4) 

Thus L(x) is a number of nonzero tie variables. Other basic statistics are the 2-star 

count, 3-star count,.., k-star count and triangle count [33,17]. A k-star is a 

configuration in which one node is connected to k other nodes (Figure 1) while a 

triangle is a complete subgraph of 3 nodes i, j, k so that xij=xik=xki=1. The model 

with these statistics only rarely provides a good fit to empirically observed social 

networks.  

 

Figure 1. Sub-network configurations: k-stars, k-triangle and k-two-path. 

 

Snijders et al. [17] suggested a more general specification. The following 

configurations were introduced: a k-2-path is a sub-network comprising 2 nodes, i 

and j, and a set of exactly k different nodes, sharing ties with both node i and node 

j; a k triangle may be defined as such a k-2-path in which nodes i and j are 

connected by a tie (xij=1) (Figure1). Snijders et al. [17] also introduced 

“geometrically weighted degree” in order to model all k-stars with a single 
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parameter. This was done by placing decreasing weights on higher degrees. The 

same approach was also applied for k-2-paths and k-triangles. Denote the number 

of k-stars in network by Sk(x), number of k-2-paths by Uk(x) and number of k-

triangles by Tk(x). The following “alternating statistics” (so called as the weights 

have alternating signs, thereby balancing the positive weights when k is even with 

negative weights when k is odd) were proposed: 

1
2

2

( ) ( 1) ( ) /
N

k k

AS k

k

z x S x 






  , (5) 

2
1 12

2 1

3

2 ( )
( ) ( ) ( 1) ( ) /

N
k k

A P k

k

U x
z x U x U x 




 



    , (6) 

3

1 1

1

( ) 3 ( ) ( 1) ( ) /
N

k k

AT k

k

z x T x T x 






   , (7) 

where N is the number of nodes and λ is a constant damping parameter; we use 

λ=2 throughout. These alternating statistics were later rewritten in a different but 

equivalent form by Hunter [34] and have proved to be very useful for many 

empirical networks. The statistics (5-7) are not the numbers of sub-networks but 

rather they are functions of these numbers. In principle if any function f(x) may be 

used for the statistics Az =f(x) then ERGMs and the corresponding distribution (1) 

may be considered as a general form of binary distributions. 

Different actors may have different attributes. For example, nodes may 

represent individuals of different age or gender, and organizations with different 

ownership structures and of different size. Social networks researchers are often 

interested in how these attributes influence the tendency of actors to form ties. In 

this paper “activity” and “interaction” statistics will be used for networks with 

binary attributes  0,1ia  . Activity measures the increased propensity for a node 

with attribute 1ia  to form a tie, regardless of the attribute of the other node. It is 

defined as 

,

i ij

i j

z a x  . (8) 

Interaction measures the increased propensity for a node i with 1ia  to form a tie 

to another node j also with 1ja . It is defined as: 
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
ji

jiij aaxz
B

,

 . (9) 

 Nodes may also have a categorical attribute ci. The “matching” statistic 

measures the increased propensity for two actors to form a tie between them if 

they have the same value of the categorical attribute. It is defined as: 


ji

ccijMatch ji
xz

,

, , (10) 

where yx , is the Kronecker delta function. The statistics (9) and (10) are the count 

of ties in the network, but in contrast to statistic (4) that counts the number of all 

network ties, statistics (9) and (10) count the number of specific network ties. The 

statistic (10) counts the number of ties between those nodes that have the same 

categorical attributes and the statistic (9) counts the number of ties between nodes 

with attributes 1ia . 

Statistics zA specify not only model interaction but also network properties. 

When ERGM estimation is performed, equation (3) is often written as the 

following system of equations 

( ( )) ( )A A obsz E X z x  . (11) 

3. MCMC sampler for ERGMs 

MCMC simulation is necessary for estimating expectation of graphs ( )E X  at a 

given set   of model parameters. Currently only Metropolis-Hastings algorithms 

[27] are used for ERGMs with more than one statistic. The Metropolis-Hastings 

algorithm proposes transitions from the current network x to a proposed network 

x’, where the probability of accepting a move from x to x’ is given by 

( ' ) Pr ( ')
( ') min 1,

( ') Pr ( )

q x x X x
P x x

q x x X x





  
   

  
, (12) 

where q is a proposal distribution. It describes proposed changes to the current 

state of the Markov chain. This algorithm proposes different MCMC states x’ with 

different probability ( ')q x x . Thus the transition probabilities that define the 

transition matrix of the Markov chains [35] are given by 
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( ') ( ') P( ')x x q x x x x      when 'x x . The Metropolis-Hastings 

algorithm satisfies the detailed balance requirements by construction thanks to the 

form of the acceptance probability [27,35]. 

 Several MCMC samplers were suggested for ERGMS, that differ in the 

proposal distribution q. Typically, the Basic MCMC sampler is used. In the Basic 

sampler, two nodes i and j (dyad) are selected uniformly at random and the 

corresponding tie variable xij is toggled: delete the tie between these actors if it 

exists and add the tie if it is absent. 

Another sampler is the Fixed Density (FD) sampler [18,36] that modifies 

the Basic sampler by fixing the number of ties equal to that in the observed 

network, L(x)=Lobs. The FD sampler may be described as follows: select randomly 

one null dyad (xij=0) and one non-null dyad, (xkl=1). The proposal is to toggle the 

values of both these dyads simultaneously. This proposal does not modify the 

number of network ties. If at the starting point the network had Lobs ties then all 

the graphs generated by this sampler have constant number of ties L(x)=Lobs. The 

proposal of FD sampler may be written in the analytical form as: 

max

1 1
( ')

obs obs

q x x
L L L

  


, (13a) 

where maxL is the full number of dyads, max

( 1)

2

N N
L


  if we consider 

nondirected networks (xij=xji). This proposal is symmetric ( ') ( ' )q x x q x x    

and hence it cancels in (12). The resulting acceptance probability is that of 

Metropolis Monte Carlo [37]. 

Thus FD algorithm samples not from the probability distribution 

Pr( )X x given by (1) but from the probability distribution given by 

( ),Pr'( ) Pr( )
obsL x LX x X x   . With the normalizing constant this probability 

distribution may be written as 

( ),

: ( )

Pr'( ) exp ( ) ( ) exp ( ) ( )
obs

obs

L x L L A A L A A

A L x L x L A L

X x L x z x L x z x
  

   
          

   
   . (13b) 

As soon as L(x) is constant the term ( )LL x  cancels in the numerator and the 

denominator (13b). Hence the parameter L  is not a parameter of the model (1) 
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when FD sampler is used and the dimension of the system of equations (11) is 

reduced by one compared to the one of the Basic sampler. This already reduces 

the CPU time needed for parameter estimation. Furthermore, decreasing the 

number of possible network states X simplifies the distribution (1), and MCMC 

sampling from the simplified distribution may be faster. In reality, however, it 

may prove to be slower. The reason is that constraining L(x)=Lobs creates 

“forbidden” states with zero probability Pr( ( ) ) 0obsL x L   which worsen the 

mixing of Markov chains. The FD sampler can be useful for the estimation of 

some networks [38-39,17] but often it is less efficient than other MCMC 

samplers. 

Another popular MCMC sampler for ERGMs is the so-called “TNT” (Tie-

No-Tie) sampler [40]. Large social networks are typically sparse and this sampler 

is designed to alleviate problems that may arise due to sparseness. As in the Basic 

sampler, only one dyad is toggled at each simulation step of the TNT sampler, but 

rather than selecting a dyad to toggle uniformly at random, the algorithm first 

tosses a fair coin to decide whether to toggle a null (filling move) or a non-null 

dyad (deleting move). Once the move type has been determined, the dyad to be 

toggled is chosen uniformly at random among the available null (for a filling 

move) or non-null dyads (for a deleting move). With the TNT sampler, null dyads 

are chosen with probability ½ (instead of the proportion of non-null dyads as in 

Basic sampler, which is close to 1 for sparse networks). The corresponding 

proposal distributions for filling (14a) and deleting (14b) moves are: 

1

max( ') 0.5( ( ))q x x L L x    , (14a) 

1( ' ) 0.5( ( ) 1)q x x L x    . (14b)
 

The TNT sampler is often more efficient for social networks than the Basic 

sampler. However, when the TNT sampler is used for parameter inference, the 

estimation of L  is required. Furthermore, the TNT sampler produces values of 

L(x) that are significantly different from the observed value. TNT proposal can 

even produce empty (L(x)=0) or full (L(x)=Lmax) networks during MCMC 

simulation. In this case, proposal (14a, b) should be modified. One possible 

modification is detailed in Section 4. 
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4. Improved Fixed Density MCMC sampler 

We propose the Improved Fixed Density (IFD) MCMC sampler for ERGMs. Like 

the FD sampler, it decreases the number of allowed network states, however it 

does so without worsening the mixing of Markov chains. This is accomplished by 

introducing an auxiliary parameter and a computationally simple method for 

finding its value. At the same time the proposal distribution of IFD sampler is 

very similar to that of the TNT sampler (14a, b) making it useful also for sparse 

networks. 

If the MCMC simulation converges to its equilibrium stationary 

distribution, then further MCMC transitions do not modify this distribution. In 

this case, the average properties of the system under study are constant. In the 

case of ERGMs such properties are values of statistics zA(x). Consider transitions 

that modify the number of ties L(x) by ±1 (as e.g. in the Basic or TNT samplers). 

The stationary distribution is reached only if the average probability that MCMC 

transitions increase L(x) equals the average probability that MCMC transitions 

decrease L(x). Thus the expected number of ties <L>=Lobs if the following 

condition is satisfied: 

   ( ) ( ') 1 ( ) 1 ( ')obs obs obs obsL x L L x L L x L L x L          . (15) 

Indeed (15) <=> obsL L   when Basic or TNT MCMC samplers are used. The 

IFD sampler is described below. 

Taking the term L Lz   out from the sum, the probability distribution (1) 

may be written as: 

1
Pr( ) exp ( ) ( )A A L L

A L

X x z x z x
k 

 
    

 
  (16) 

With larger values of
 L  networks with more ties L(x) are more likely. Thus the 

expected number of network ties can be modified by modifying L . Furthermore, 

with any given parameters A L it is possible to find a L  value that satisfies (15). 

If such a L  is found then constraining the Markov chain realizations by graphs 

with L(x)=Lobs ties does not worsen the mixing. 
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 The usual MCMC approach (e.g. Basic or TNT sampler) allows one to 

find L such that (15) is satisfied when L  is constant. In contrast the method we 

suggest allows one to find L  such that (15) is satisfied when L is constant. More 

precisely L is not constant but two L values are possible { , 1}obs obsL L L  . Thus 

we constrain the number of network ties in the vicinity of the observed value Lobs. 

We allow networks to have only Lobs or Lobs +1 ties and apply the TNT sampler. 

The TNT filling move (14a) is applied if network has Lobs ties and TNT deleting 

move (14b) is applied if the network has Lobs+1 ties, 

Fill randomly selected null dyad if ( )
( ')

Delete randomly selected tie if ( ) 1

obs

obs

L x L
q x x

L x L


  

 
.    

In analytical form, this proposal may be written as follows: 

( ), ( '), 1 ( ), 1 ( '),

max

1 1
( ')

1obs obs obs obsL x L L x L L x L L x L

obs obs

q x x
L L L

      
 

, (17) 

max( ' )

( ') 1

Lz

obs

obs

q x x L L

q x x L



  
  

  
, (18) 

where 
1 for thefilling move

1 for thedeleting move
Lz


  


. 

Inserting (18) and (16) and into (12) and making simple rearrangements the 

following expression for the Metropolis-Hasting acceptance probability is 

obtained: 

( ') min 1,exp ( )A A L

A L

P x x z x z V


  
       

  
 , (19) 

where 

maxlog
1

obs
L

obs

L L
V

L

  
    

  
. (20) 

Here V is an auxiliary parameter and detailed balance is satisfied at any V value. 

However, the efficient MCMC sampler is obtained if condition (15) is satisfied. 

The left side of (15) is nothing but the acceptance rate of filling moves of 

the suggested IFD sampler, and the right side of (15) is nothing but the acceptance 
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rate of deleting moves of this sampler. If (15) is satisfied then, similar to the TNT 

sampler, filling and deleting moves are proposed with the same probability ½. 

Hence the IFD sampler possesses those properties of TNT sampler that make it 

useful for sparse networks. As soon as network states with both Lobs or Lobs +1 ties 

are allowed, the acceptance rate of filling and deleting moves may be estimated 

directly during MCMC simulation. By modifying the V value, the acceptance 

rates of filling and deleting moves may be adapted to guarantee that (15) is 

satisfied. The algorithm of the suggested IFD sampler is detailed in the Appendix. 

5. Estimation results. 

Verification of MCMC convergence is not a simple matter and different 

methods have been suggested [41]. Efficiency of different MCMC samplers is 

problem specific. We performed MCMC sampling from probability distribution 

given by (1,2), (4-9) with ERGM parameters given in Table 1. We use the 

effective sample size (ESS) as a measure of efficiency of the MCMC samplers 

that does not depend on machine or implementation. Networks of different sizes N 

were sampled with N ranging from 500 to 5000. The ESS was calculated in the 

post burn-in period using the “coda” package [42] for MCMC convergence 

diagnostics. An efficient sampler would produce large ESS at a smaller number of 

MC steps. We define the efficiency as ESS per 1 million MC steps. The efficiency 

of IFD, FD and Basic samplers is compared in Figure 2, where ESS is presented 

as a function of network size N. From this plot one can see that the efficiency of 

all the samplers decreases with the network size and that the IFD sampler is much 

more efficient than the FD and Basic samplers. 

The values on the left and on the right side of (15) were extracted from the 

simulation results of the IFD sampler and are compared in the inset of Figure 2. 

One can see that the suggested algorithm produces values of V such that the 

acceptance rate of IFD filling moves approximately equals the acceptance rate of 

IFD deleting moves. The presented results correspond to last 7∙105 MC steps only. 

In any case if (15) is not satisfied then it is identified on step 5 of the suggested 

algorithm (see Appendix). 
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Figure. 2. The network size dependence of the efficiency of IFD, FD and Basic samplers. 

IFD results are well fitted by 80000N-1.2 function (dashed line). Left and right side of eq. (15) 

are compared in the inset. 

 

We use IFD sampler to study social networks. We perform estimation of 

ERGM parameters for several different networks using different MCMC samplers 

and compare the result of estimation and the elapsed CPU time. Stochastic 

approximation was used for the solution of moment equation (3). The popular 

stochastic approximation method for ERGMs estimation was suggested and 

detailed by Snijders [18]. The following MCMC samplers were used for 

regenerating the expected network ( )E X : the Basic sampler, FD sampler and 

the proposed IFD sampler. The simulation was performed on Cray XC30 “Piz 

Daint” at the Swiss National Supercomputing Centre (CSCS). 

5.1 Simulated networks 

In order to test the methods and their implementation we first estimate 

simulated networks with known properties. 100 networks were generated using 

the model given by (1,2), (4-9) and the same value of parameters, given in Table 

1. The networks were generated using Basic MCMC sampler as implemented in 

PNet package [24]. Eight independent estimations were performed for each of 

these networks. The effects (4-9) were estimated and the obtained values are 

reported in Table 2. By comparing the estimation results (Table 2) with exact 
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value (Table 1) we conclude that stochastic approximation and IFD sampler 

produce correct estimation of ERGM parameters. 

Table 1. Parameters of the simulated networks. “50/50” under Attributes indicates that each node 

has a binary attribute, and 50% of the nodes have the “1” value of the attribute. 

N Attributes 
L  AS AT A2P ρ ρB 

5000 50/50 -4.0 0.2 1.0 -0.2 0.2 0.5 

 

Table 2. Estimates of full simulated networks obtained using IFD sampler. 

 AS AT A2P ρ ρB 

Median 0.42 0.995 -0.199 0.195 0.501 

Std. Dev 0.7 0.01 0.007 0.018 0.023 

 

We compared the estimation time of the same networks on the same 

machine, but with different MCMC samplers. The average estimation time of 

simulated networks using the IFD sampler is 33 minutes. Estimation of these 

networks using the Basic or FD samplers was not possible in the 24 hours time 

limit. However, prior research reported that with the PNet package with the Basic 

sampler on a different system it took 84 hours [43]. This CPU time and the 

percent of converged solutions [43,18] of (3) are given in Table 3. 

Table 3. Average CPU time for the estimation of full networks and snowball samples. Results 

obtained by using different MCMC samplers. 

MCMC 

sampler 

Network Avg. 

sample size 

Con-

verged, % 

Avg. estim. time 

(minutes) 

IFD  Full 5000 97.7 % 33.2  

Basic  Full 5000 - >1440 

FD Full 5000 - >1440 

IFD  Snowball 1400 98.7 % 0.56 

Basic  Snowball 1400 92.9 % 8.6 

FD  Snowball 1400 74.4 % 17.7 

 

 In order to estimate ERGM parameters of large networks, conditional 

estimation of snowball samples was suggested [44] and was used for the 

estimation of ERGM parameter of several empirical networks [43]. The 

parameters for snowball samples are estimated in parallel and are used to estimate 

the parameters of the whole network. The accuracy of such estimates increases 

with the size of snowball samples. The IFD sampler may be applied also for the 

estimation of snowball samples. Snowball sampling [43] was performed with 20 

seeds, 2 waves and 20 snowball samples for each simulated network. The median 
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of estimations of these 20 samples was taken as the estimation of the network. 

Estimation result for all the 100 networks are presented in Figure 3. 

 

Figure 3. Estimated parameters of 100 simulated networks, obtained using snowball sampling and 

conditional estimation. Error bars show the 95% confidence interval calculated using non-

parametric bootstrap adjusted percentile method, suggested by Efron [45]. Horizontal lines 

indicate the value of corresponding parameter from Table 1. 

 

The conditional estimation described above was performed using IFD, 

Basic and FD samplers. Results obtained with Basic sampler and IFD sampler are 

compared in Table 4. Again, the estimations obtained with Basic and IFD 

samplers are very close. However, the CPU time of these estimations is very 

different. Different CPU time was required for the estimation of different 

snowball samples and the distribution of this CPU time is shown in Figure 4. In 

this Figure the results obtained using the Basic, FD and IFD samplers are 

compared. The average CPU time of these estimations is given in Table 3. Figure 

4 shows that in some cases the FD sampler may be more efficient than the Basic 

sampler, but on average the FD sampler is less efficient than the Basic sampler. 

One can see that the IFD sampler is more efficient, and compared with the Basic 

sampler the speedup is about 20 times. Furthermore, the number of converged 

estimations increases when IFD sampler is applied (see Table 3). We did not use 

the TNT sampler, because the proposal (14) cannot be used for the conditional 
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estimations, however the IFD sampler is based on the TNT sampler and in Section 

4 we explained why the IFD sampler is more efficient. 

 

Table 4. Estimations of simulated networks using snowball sampling and conditional estimation. 

Results obtained using Basic and IFD sampler are compared. 

 AS AT A2P ρ ρB 

IFD, Median -0.64 1.00 -0.177 0.172 0.476 

IFD, Std. Dev. 1.5 0.02 0.015 0.066 0.068 

Basic, Median -0.468 1.00 -0.177 0.171 0.514 

Basic, Std. Dev. 1.78 0.028 0.017 0.074 0.066 

 

 

Figure 4. Distribution of CPU time of the estimation of snowball samples (log plot). The average 

estimation time is given in Table 3. 

5.2. Empirical networks 

We used the IFD sampler for the estimations of actual (empirical) social 

networks. We estimated the network co-authorship of scientists working on 

network theory and experiment (Netscience) [46] available from the Nexus 

repository (http://nexus.igraph.org). The network has 1589 nodes and 2742 ties. It 

was possible to estimate the model without snowball sampling. The network 

actors have no attributes and the only effects estimated were AT, AS and A2P. 

The result of corresponding parameter estimations and the average estimation 

time, obtained using Basic and IFD samplers, are compared in Table 5. Again, the 

values of the ERGM parameters obtained using Basic and IFD sampler are close, 

but the IFD sampler requires less CPU time. The MCMC acceptance rate was also 

calculated and the values obtained are also presented in Table 5. The acceptance 

rate is the fraction of proposed MCMC transitions that were accepted. It is easy to 
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calculate the acceptance rate and it is considered that MCMC converges faster 

when acceptance rate is about 23 % [47].  

Table 5. Results of estimation of ERGM parameter of Netscience network (over 8 estimations) 

MCM 

sampler 

N AT AS A2P MCMC 

acc. rate, 

% 

Converged, 

% 

Estim. time 

(minutes) 

IFD  

Mean 

1589 3.858 -0.774 -0.01 4.3 100% 61 

IFD  

Std.Dev. 

1589 0.0025 0.0039 9.2∙10-4   31 

Basic 

Mean  

1589 3.848 -0.774 -0.01 0.4 88% 300 

Basic 

Std.Dev. 

1589 0.0022 0.0029 7.2∙10-4   72 

  

The IFD sampler was successfully applied also in the estimation of a larger 

social network. We analyzed the network of US hospitals comprising 3306 

hospitals and 14413 ties [48]. The tie represents the exchange of patients between 

hospitals [49]. The hospital had one binary attribute (whether or not the hospital 

has a teaching program), one continuous attribute (discharges from the hospital) 

and three categorical attributes describing the region the hospital belongs to: 

distinct hospital referral region (hrr), federal regions and the state. Some attributes 

were missing in the original data. The hospitals with missing attributes and the 

hospitals of Puerto Rico and Virgin Islands were excluded from the network that 

we studied. The resulting network had N=3061 hospitals and 12401 ties. The 

network was considered undirected (xij=xji) and the effects (5-10) described in 

Section 2 were estimated. The effect (10) was estimated for the three categorical 

attributes. It was not possible to estimate this network using the Basic sampler in a 

reasonable time. But using the IFD sampler it was possible to estimate the 

network parameters in 24 hours. The acceptance rate of IFD sampler was 15 %, 

much larger than the acceptance rate of the Basic sampler 0.4 %. 

The results of hospital network estimation are given in Table 6. These 

results could be described as follows. The effect of two-paths is small, while 

effect of the stars is negative (the number of stars in the network is smaller than 

would be expected by chance). This is an anti-preferential attachment effect, 

indicating that, conditional on other effects in the model, there is no strong 

tendency for the creation of network hubs. The effect of triangulation (network 

closure) is positive. Hospitals with a teaching program are more active in sharing 

patients, but they share patients more often with hospitals without teaching 
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programs. Not surprisingly, the hospitals within the same region share patients 

more often among themselves. More detailed analysis of the hospital network 

requires analysis of the directed network (xij≠xji) and the corresponding statistics. 

 

Table 6. Results of estimation of ERGM parameter of network of N=3061 US hospitals using IFD 

sampler (over 8 estimations). 

 AT AS A2P ρ 
 
ρB 

teaching 

Match
 

hrr
 

Match 

region 

Match 

state 

Con-

verged 

Mean 1.383 -1.951 0.0057 0.898 -0.773 1.87 2.126 1.186 62 % 

Std.Dev. 4.6∙10-4 0.0029 5.3∙10-5 8∙10-4 0.0016 0.0013 0.0011 0.0013  

 

6. Conclusion and extensions 

ERGMs are a general form of probability distribution for a very large number of 

binary variables. MCMC methods are required for reliable estimation of ERGM 

parameters. Estimation of ERGM parameters is a computationally expensive 

procedure. Developing efficient computational methods extends the circumstances 

in which ERGMs may be employed for the analysis of social and other kinds of 

networks. 

The commonly used MCMC samplers for ERGMs were reviewed. Based 

on these samplers a new MCMC sampler was proposed. The proposed IFD 

sampler decreases the number of allowed network states and thus decreases the 

complexity of the problem. The number of allowed network states may be 

decreased without worsening the mixing of Markov chains by introducing a 

continuous auxiliary parameter. In the IFD sampler the number of network ties 

L(x), defined by Eq. (4), is suggested to be constrained and the auxiliary 

parameter is related with the corresponding model parameter. The value of the 

auxiliary parameter is modified during MCMC simulation and a computationally 

simple method is suggested for finding its value. 

The efficiency of the samplers was compared in terms of their effective 

sample size (ESS) on a given probability distribution and ESS produced by IFD 

sampler is at least one order of magnitude larger than that of other samplers. 

Several networks were estimated using different MCMC samplers and the 

estimation results were compared. It is shown that estimates obtained with IFD 
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and commonly used samplers are identical, but less CPU time is required when 

the proposed IFD sampler is applied. Using the IFD sampler an ERGM for the 

network of N=3061 hospitals and 12401 ties could be estimated in less than 24 

hours. The simulated networks having N=5000 nodes were estimated in less than 

one hour. 

The auxiliary parameter approach we have suggested may be extended in 

order to further decrease the number of allowed network configuration. While 

constraining only the statistics (4) reduces the CPU time of ERGMs estimation by 

an order of magnitude, the suggested approach can also be used to constrain the 

value of other networks statistics to the value observed in the data. In particular 

the described MCMC method can be applied to constrain not only the full number 

of network ties (4) but also the number of those ties that are counted by statistics 

(9) and (10). Thus the suggested approach opens new possibilities for the further 

developments of MCMC samplers for ERGMs. 

We have shown that the proposed MCMC sampler can be used together 

with recently developed conditional estimation from snowball sampling, a method 

that enables to study social networks of very large sizes. In this case larger 

snowball samples may be modeled and thus more accurate ERGM estimations 

may be obtained. 

Auxiliary parameter MCMC is an adaptive MCMC method and theoretical 

difficulties may arise with such methods [50]. Both the efficiency and the 

accuracy of adaptive methods may depend on the details of the adaptation 

algorithm. The IFD sampler has only been implemented for undirected networks, 

and tested on a small set of simulated and empirical networks. In these cases, it 

gives significant reduction in the processing time with no visible reduction in the 

accuracy. We therefore believe that it is a good candidate to become the standard 

sampler to use for estimating ERGM parameters. 
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APPENDIX: IFD SAMPLER ALGORITHM 

Let RN be a random uniform number between 0 and 1. m, M and K are constants. 

The algorithm of the suggested IFD sampler is described below. 

1. Initialization t=0; 

2. Initialization NA =0; ND =0; Increment t; 

3. While (ND+NA<m) 

3.1. Increment NA. Chose uniformly random null dyad (xij=0).  

Using (19) calculate probability P to toggle its value. 

If P≥RN toggle xij value and go to step 3.2. If P<RN go to step 3.1. 

3.2. Increment ND. Chose uniformly random non-null dyad (xij=1).  

Using (19) calculate probability P to toggle its value. 

If P≥RN toggle xij value and go to step 3.1. If P<RN go to step 3.2. 

4. Update auxiliary parameter: 2

t t-1 sgn( )( )D A D AV V K N N N N      

5. A check of conditions (15) is performed. If 
D AN N than (15) is satisfied. If 

/( ) 0.8D A D AN N N N    than larger K value may be required. 

6. If (t<M) go to step 2. 

Here M is the minimum number of steps required in order to reach the 

stationary distribution [18]. The value of m is suggested to be 100. The value of K 

is suggested to be small, K=10-5. If this value is too small it is determined on step 

5 of the above algorithms and the K value is increased. Though any initial value of 

auxiliary parameter V0 may be used, we used such a value that satisfies (15). It 

can be easily estimated on a pre-computing step before MCMC simulation. It was 

done by making a small number of steps (M=10) of the above algorithm but 

without modification of x (“toggle xij value” instruction is not executed on the pre-

computing step).  
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