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Abstract

The exponential random graph model (ERGM) is a well-established statis-
tical approach to modelling social network data. However, Monte Carlo
estimation of ERGM parameters is a computationally intensive procedure
that imposes severe limits on the size of full networks that can be fitted. We
demonstrate the use of snowball sampling and conditional estimation to esti-
mate ERGM parameters for large networks, with the specific goal of studying
the validity of inference about the presence of such effects as network closure
and attribute homophily. We estimate parameters for snowball samples from
the network in parallel, and combine the estimates with a meta-analysis pro-
cedure. We assess the accuracy of this method by applying it to simulated
networks with known parameters, and also demonstrate its application to
networks that are too large (over 40 000 nodes) to estimate social circuit and
other more advanced ERGM specifications directly. We conclude that this
approach offers reliable inference for closure and homophily.

Keywords: Exponential random graph model (ERGM), Snowball
sampling, Parallel computing

1. Introduction

Exponential random graph models (ERGMs), first introduced by Frank
and Strauss (1986), are a class of statistical model that are useful for mod-
elling social networks (Lusher et al., 2013). Since their introduction, a body
of work has been developed around ERGM theory and practice, including
the introduction of new specifications for modelling social networks (e.g.,
Snijders et al., 2006; Robins et al., 2007; Goodreau, 2007), and more so-
phisticated methods for estimating ERGM parameters (e.g., Snijders, 2002;
Handcock et al., 2008; Wang et al., 2009; Caimo and Friel, 2011; Hummel
et al., 2012). Originally, the most common method for estimating ERGM pa-
rameters was maximum pseudo-likelihood (Strauss and Ikeda, 1990). More
recently, Markov chain Monte Carlo maximum likelihood estimation (MCM-
CMLE) (Corander et al., 1998; Snijders, 2002; Corander et al., 2002; Hunter
and Handcock, 2006) has become the preferred method (Robins et al., 2007).
These techniques have several advantages over maximum pseudo-likelihood:
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if the estimation does not converge, a degenerate model is likely (a situation
that maximum pseudo-likelihood does not indicate); converged estimates can
be used to produce distributions of graphs in which the observed graph is
typical for all effects in the model; reliable standard errors for the estimates
are obtained (Robins et al., 2007); and point estimates are more accurate
(Snijders, 2002).

Such MCMCMLE techniques require the generation of a distribution of
random graphs by a stochastic simulation process. This process, which re-
quires a number of iterations to “burn in” the Markov chain, as well as a large
number of iterations to generate samples that are not too auto-correlated,
is computationally intensive, and scales (at least) quadratically in the num-
ber of nodes in the network. This limits the size of networks to which an
ERGM can be fitted in a practical time. Furthermore, this process is inher-
ently sequential (although several chains can be run in parallel, they each
must be burned in), which limits the ability to take advantage of the parallel
computing power available in modern high performance computing resources.

In this paper, we show how to fit ERGMs to certain large networks where
model fitting using standard MCMC procedures would be impractical or im-
possible. The key idea takes advantage of recent developments in conditional
estimation for ERGMs (Pattison et al., 2013) to take multiple snowball sam-
ples, estimate ERGM parameters for each sample in parallel, and combine
the results with meta-analysis.

To the best of our knowledge, the work of Xu et al. (2013) is the first to
take a similar approach. Xu et al. use a special data-intensive supercomputer
to estimate an ERGM for a Twitter “unfollow” network with over 200 000
nodes, estimating each of nearly 400 samples in parallel (by running stat-
net (Handcock et al., 2008) independently on each sample), and combining
the results with meta-analysis (Snijders and Baerveldt, 2003). However, as
Pattison et al. (2013) show, simply estimating the parameters of snowball
samples without taking account of the snowball sampling structure, and as-
suming they are estimates of the full network, can lead to quite incorrect
estimates. The issue is that, for a large class of models, standard parameter
estimates for a graph are dependent on the number of nodes N and do not
scale up in a consistent manner as N increases (Rolls et al., 2013; Shalizi and
Rinaldo, 2013). Further, the Xu et al. (2013) method is applied only to the
single Twitter unfollow network, for which the true values are not known, so
there can be no comparison of true and estimated parameters, and therefore
the reliability of the parameters obtained from their meta-analysis could not
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be assessed.
The motivations for fitting ERGMs to data are several. Usually, the aim

is to infer whether certain well-established network processes that lead to tie
creation are consistent with the data, and to parse apart different processes
that might be operating simultaneously. This can be done by parameteriz-
ing competing explanatory processes and then inferring which of these are
significant (Lusher et al., 2013). But, further, with precise parameter esti-
mates, simulation of the model results in a distribution of graphs that can
be interpreted as consistent with the data (at least in regards to the fitted
effects). This distribution can be treated as the range of plausible graphs
in a population of networks, from which a number of conclusions may be
drawn. For instance, the population might relate to school classrooms or to
communities of drug users (Rolls et al., 2013).

With very large data, however, the second motivation is often of less con-
cern, because the idea of a “population” of large data is not always coherent.
(There is for instance only one world wide web, not a population.) In this
case, the interest is more typically on understanding the network processes
within the data, such as closure and homophily. In this article, then, we are
most interested in the validity of statistical inference for our procedure and
hence we focus on type I and type II errors in our results.

2. Exponential random graph models

Under a homogeneity assumption whereby parameters are equated for all
structurally identical subgraphs, an ERGM is a probability distribution with
the general form

Pr(X = x) =
1

κ
exp

(∑
A

θAzA(x)

)
(1)

where

• X = [Xij] is a 0-1 matrix of random tie variables,

• x is a realization of X,

• A is a configuration, a (small) set of nodes and a subset of ties between
them,

• zA(x) is the network statistic for configuration A,
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• θA is a model parameter corresponding to configuration A,

• κ is a normalizing constant to ensure a proper distribution.

In the present work we will be using only undirected graphs, so the ma-
trix X is symmetric. Assumptions about which ties are independent, and
therefore the configurations A allowed in the model, determine the class of
model.

In the simplest case, where all tie variables are assumed to be indepen-
dent, the ERGM reduces to a Bernoulli random graph distribution, otherwise
known as a simple random graph or Erdős-Renyi random graph (Gilbert,
1959). In such a model only one configuration is used, an edge between two
nodes, with the network statistic zL(x), the number of edges in the network,
and the corresponding parameter θL.

The Markov dependence assumption, that two tie variables are condition-
ally independent unless they have a node in common, leads to the class of
Markov random graphs (Frank and Strauss, 1986). In such models, the sub-
graph configurations include stars (in which a node has ties to two or more
other nodes) and triangles (three mutually connected nodes). Stars can be
further categorized as 2-stars, a subset of three nodes in which one node is
connected to each of the other two, 3-stars, a subset of four nodes in which
one node is connected to each of the other three, and so on, in general giving
k-stars. Note that configurations are nested inside each other, for example
a triangle contains three 2-stars. Associated with these is the alternating k-
star statistic (Snijders et al., 2006), which is a weighted sum of the number
of k-stars from k = 2 to k = N − 1 (where N is the number of nodes), with
the sign alternating:

zAS =
N−1∑
k=2

(−1)k
Sk
λk−2

(2)

where Sk is the number of k-stars and λ ≥ 1 is a damping parameter which re-
duces the impact of higher order stars as it is increased. The alternating star
parameter provides modelling flexibility in fitting node degree distributions,
and alleviates model degeneracy. Throughout we use λ = 2, as suggested by
Snijders et al. (2006) and modelling experience.

A more general class of model is based on social circuit dependence (Sni-
jders et al., 2006; Robins et al., 2007) and often parameterized with higher
order parameters such as the alternating k-triangle and alternating k-two-
path (or alternating two-path) statistics. A k-triangle is a combination of k
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Figure 1: The structural configurations related to the alternating k-star (AS), alternating
k-two-path (A2P) and alternating k-triangle (AT) statistics.

individual triangles which all share one edge, useful for modelling transitivity
in the network. The alternating k-triangle statistic was defined in Snijders
et al. (2006), and can be expressed as:

zAT = 3T1 +
N−3∑
k=1

(−1)k
Tk+1

λk
(3)

where Tk is the number of k-triangles. Again, we set the damping parameter
to be λ = 2 throughout.

The k-two-path configuration is the number of distinct paths of length
two between a pair of nodes, equivalent to the k-triangle configuration with-
out the common (or “base”) edge. Analogous to the alternating k-star and
alternating k-triangle statistics, the alternating k-two-path statistic was de-
fined in Snijders et al. (2006), and can be expressed as:

zA2P = P1 −
2P2

λ
+

N−2∑
k=3

(
−1

λ

)k−1
Pk (4)

where Pk is the number of k-two-paths. We use λ = 2 throughout.
These configurations are illustrated in Figure 1. Software to fit and sim-

ulate ERGMs using these configurations includes PNet (Wang et al., 2009)
and statnet (Handcock et al., 2008).

The alternating k-triangle and alternating k-two-path statistics can also
be expressed in terms of edgewise and dyadic shared partners as the “geo-
metrically weighted edgewise shared partner” (GWESP) and “geometrically
weighted dyadic shared partner” (GWDSP) statistics, respectively (Hunter,
2007). The statnet software package (Handcock et al., 2008) uses GWESP
and GWDSP rather than alternating k-triangle and alternating k-two-path
statistics by default (Hunter, 2007).
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Actor with attribute

Actor with or without attribute

Activity Interaction

Figure 2: The binary attribute effects activity (ρ) and interaction (ρB).

All the configurations discussed so far have been structural, without the
consideration of nodal attributes. In addition we wish to consider how an
attribute (covariate) on a node can affect the network structure. Attributes
may be used in order to relax homogeneity assumptions (Robins et al., 2001).
Here we will restrict ourselves to a single binary attribute on each node,
that either takes the value True or False, and consider two attribute related
configurations: activity and interaction.

Activity measures the increased propensity for a node with the True value
of the attribute to form a tie (regardless of the attribute of the other node).
Hence its statistic is a count of the number of nodes which have a tie and
have the True value of the attribute. We denote its corresponding parameter
as ρ.

Interaction measures the increased propensity for a node with the True
value of the attribute to form a tie to another node also with the True
attribute value. Its statistic is therefore a count of the number of ties be-
tween two nodes both with the True value of the attribute. We denote its
corresponding parameter as ρB. The relationship between the activity and
interaction parameters is discussed in Section 6. The activity and interaction
configurations are shown in Figure 2.

In this paper we will work under the social circuit dependence assumption,
and use the parameters Edge (θL), alternating k-star (AS), alternating k-
triangle (AT), alternating two-path (A2P), activity (ρ) and interaction (ρB).

Normally, all six (or four when there are no node attributes) parameters
are estimated. However, there are situations in which it is useful to condition
on density, that is, the density is fixed at a constant value (the observed value
of the snowball sample being estimated) in the estimation procedure. In these
cases, therefore, the Edge (θL) parameter is not estimated, and we refer to
the estimate being done with “fixed density”.
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3. Snowball sampling and conditional estimation

Snowball sampling (Coleman, 1958; Goodman, 1961), as a technique to
generate a sample of nodes in a network using the network structure itself,
can be simply described as follows. First we take a random sample of N0

nodes from the network, which we will refer to as the seed nodes, or wave
0 of the snowball sample. Then wave 1 of the sample consists of all nodes
that have a tie to a node in wave 0, but are not themselves in wave 0. In
general, wave l of the snowball sample consists of all those nodes that have
a tie to a node in wave l− 1 of the sample (but are not themselves in waves
0, . . . , l − 1). The totality of all nodes in the sample obtained (and the ties
between them — that is, the subgraph induced by the nodes in the sample)
is then known as an l-wave snowball sample.

This form of snowball sampling, as used in Pattison et al. (2013), differs
from the frequently used form, described in Goodman (1961) for example,
in which a fixed maximum number of ties for each node can be followed to
find a node in the next wave. The origin of the latter form is that a sampled
individual in wave l is asked to name up to m individuals, and those who
are not already present in waves 0, . . . , l then form wave l + 1. In the form
we are using, there is no such limit m, so all ties from a sampled node are
followed. This form, in which there is no limit on the number of ties to follow,
is equivalent to l steps of breadth-first search (BFS) in the network, and is
therefore also known as BFS sampling, as described for example in Kurant
et al. (2011). Work that uses this definition of snowball sampling includes,
for example, Newman (2003) and Lee et al. (2006). The distinction between
different usages of the term “snowball sampling” was discussed in a set of
three papers (Goodman, 2011; Heckathorn, 2011; Handcock and Gile, 2011).

Our approach relies on forming snowball samples of a large network. Pre-
vious work to estimate network properties based on snowball sampled data
include Thompson and Frank (2000); Handcock and Gile (2010); Pattison
et al. (2013) (see Illenberger and Flötteröd (2012) for an overview). Hand-
cock and Gile (2010) were the first to describe a method to estimate higher
order ERGM parameters from a snowball sample. Their method requires
that the size of the full network (the number of nodes, N) is known, and
that estimation over the entire set of random tie variables X is feasible (so
that N needs to be small for practical purposes). The recently developed
conditional maximum likelihood estimation procedure (Pattison et al., 2013)
also estimates ERGM parameters from snowball samples, but can be used
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even when the size of the complete network is unknown. It makes less ef-
ficient use of the data than the method of Handcock and Gile (2010), so
the latter method is to be preferred in cases where N is known and not too
large. In this paper N is known, and we consider cases where N is possibly
extremely large, and snowball samples include only a very small fraction of
the total number of nodes.

The essence of the conditional estimation method of Pattison et al. (2013)
is to do conditional estimation using the snowball sample, respecting the
snowball sampling structure. A conditional probability model of the ties in
all waves but the outermost, that is, waves 0, . . . , l − 1, has the same pa-
rameters as the ERGM for the entire network. However it can be estimated
conditionally by fixing three things: the ties connecting a node in the outer-
most wave l to a node in wave l− 1, the ties between nodes in the outermost
wave l, and for every wave in the snowball sample, the wave to which each
node belongs. Given a social circuit or Markov dependence assumption, a
tie between nodes in some wave i is conditionally independent of ties not
between nodes in waves i, i − 1 or i + 1. Hence in the MCMC simulation
used in the estimation procedure, ties in the outermost wave l are fixed, and
ties in the inner waves can change but must respect the snowball sampling
wave structure. This means that, in the simulation procedure, a tie cannot
be deleted if it is the last remaining tie to a node from an earlier wave, and
a tie cannot be added if it would “skip over” a wave. More precisely, in the
simulation, a tie that connects a node in wave i−1 to a node in wave i cannot
be removed if it is the only tie between the node in wave i and any node in
wave i− 1, and a tie that would connect a node in wave i to a node in wave
i+ δ or i− δ cannot be added unless δ ∈ {0, 1}.

4. Meta-analysis

As foreshadowed in Pattison et al. (2013), conditional estimates from
multiple random snowball samples of a single network can be carried out in
parallel. Our method does so, and combines the estimates in order to obtain
both a pooled estimate and a confidence interval for each parameter of an
ERGM for the entire network. To combine the parameter estimates for the
snowball samples into an estimate for the parameters of the entire network
we use two different schemes, and compare their performance. First, as a
robust point estimator for the entire network that relies on few assumptions
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we take the median of the snowball sample point estimates, as is done in
Pattison et al. (2013).

Second, estimates can be combined using the weighted least squares
(WLS) estimator (Snijders and Baerveldt, 2003) as in Lubbers and Snijders
(2007) and Xu et al. (2013):

µ̂wls
θ =

∑
j

(
θ̂j/(σ̂

2
θ + s2j)

)
∑

j

(
1/(σ̂2

θ + s2j)
) (5)

where

• j ∈ 1, . . . , Ns are the Ns snowball samples,

• θ̂j is the estimate for sample j,

• σ̂2
θ is the estimated between-sample variance,

• sj is the estimated standard error for sample j.

In Snijders and Baerveldt (2003) the standard error of the WLS estimator
is calculated as

se(µ̂wls
θ ) =

1√∑
j 1/(σ̂2

θ + s2j)
(6)

This expression is derived under the assumption that θj and s2j are inde-
pendent across samples, something that may be a reasonable approximation
in many circumstances (there is also a test of independence in the pack-
age siena08 (Ripley et al., 2014) for meta-analysis of network models).
Since this assumption is not necessarily true in all cases, for robustness we
use instead the non-parametric bootstrap adjusted percentile (BCa) method
(Efron, 1987; Davison and Hinkley, 1997) to estimate the confidence interval.
The BCa method adjusts for bias and skewness in the bootstrap distribution,
and we use the BCa bootstrap error estimation to estimate the standard error
for the median point estimator. The bootstrap replicates are constructed by
taking random resamples of size Ns with replacement from the Ns estimates
(one for each snowball sample).

An assumption of the WLS estimator is that {θj, j = 1, . . . , Ns} are in-
dependent across snowballs with expected value θ and variance σ2

θ . Indepen-
dence may seem implausible given that estimates are all based on the same

9



network. We may however proceed such that our collection of parameter es-
timates are conditionally independent by relying on the notion of ‘separation’
developed in Pattison et al. (2013). We refer to two subsets as well separated
regions if they are conditionally independent, conditional on a separating set.
Under social circuit dependence, and using at least two waves, two snowball
samples will form well separated regions if the only nodes in common between
the two samples (if any) are in the outermost wave of both samples. Thus
if all snowball samples are pair-wise well separated by conditioning regions,
then the estimates will be (conditionally) independent.

In particular, if the snowball samples are saturated (and connected), Sni-
jders (2010) showed that a more efficient estimator, assuming a component in-
dependent ERGM (weaker than social circuit dependence assumption), may
be obtained by conditioning only on components being connected. This may
be interpreted as if there is no “action at a distance” — ties between nodes
in one component of the network cannot be affected by changes in ties in
another component. Then estimators based on different components yield
independent estimates of the same ERGM (with the proviso that the esti-
mators are still conditional).

Strictly enforcing that snowball samples be well separated regions would
thus allow us to obtain conditionally independent estimates. But we are not
so strict in the following examples for two main reasons. Firstly, for the
purposes of comparing the sampling distributions of the pooled estimates,
it is desirable to keep the number of estimates fixed. This may be achieved
by fixing the number of seed sets and waves. Requiring snowball samples
to be strictly well separated restricts the number of snowball samples that
are possible. Secondly, finding those snowball samples is computationally
demanding. For the snowball sampling used here, seed sets are formed as
random samples from the set of graph nodes, with the condition that the seed
sets are disjoint. Dependence between snowball samples can arise from over-
lap of subsequent zones. In practice, for large graphs we expect that the effect
of overlap is small even if we do not strictly apply the complete separation
criterion, as long as the seed sets are chosen randomly and the snowball sam-
ples are small compared to the entire graph. Pathological counter-examples
are clearly possible, such as a network with a strong hub where many snow-
ball samples overlap via the hub. It is recommended, therefore, to measure
the degree of overlap between the inner waves of snowball samples to ensure
that the well separated region assumption is reasonable for a given set of
snowball samples.
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5. Implementation

The conditional estimation procedure is implemented in the C program-
ming language as a modified version of the PNet program (Wang et al.,
2009), which uses the Robbins-Monro algorithm as described in Snijders
(2002). Both an MPI version for parallel estimation on a cluster system, and
an OpenMP version for parallel estimation on a single multicore machine are
implemented. The cluster system we used is an SGI Altix XE Cluster with
1088 Intel Nehalem cores (8 per node), 2.66 GHz, running CentOS 5 and
OpenMPI.

In all of the results that follow, unless otherwise noted, we run the MPI
version of the program with 20 tasks; one task for each of the snowball
samples. Hence the ERGM parameters for all 20 snowball samples from a
network are estimated in parallel. Only estimates that converge are included
in the pooled estimates. Hence Ns, as used in the previous section and in
the tables in the next section, is the number of converged estimates, which
may be less than 20. The convergence criterion, now standard in the ERGM
literature (Lusher et al., 2013), is that the magnitude of the convergence
statistic (also known as the t-ratio) for each network statistic corresponding
to a model parameter is less than 0.1. The t-ratio is determined using 1000
networks simulated with the parameter estimates, by calculating the differ-
ence between the observed and mean (over the 1000 networks) value of the
network statistic divided by the standard deviation (over the 1000 networks)
of the network statistic.

Scripts for sampling in large networks, visualization, and bootstrap error
estimation are written in R (R Core Team, 2013) using the igraph pack-
age (Csárdi and Nepusz, 2006). Bootstrap confidence intervals are estimated
with 20000 replicates using the R boot package (Davison and Hinkley, 1997).
Boxplots are generated with the R ggplot2 package (Wickham, 2009). Con-
fidence intervals, shown in graphs and used in inference, are computed as 2
or 3 standard errors as indicated.

6. Simulation studies

In order to evaluate the performance of our method we require networks
with known parameters. For each of our sets of parameters shown in Table 1,
we generate 100 samples from a network distribution with those parameters
using PNet (Wang et al., 2009). Each of these networks is simulated with
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a fixed number of nodes (N), edge parameter (θL), and parameters for al-
ternating k-star (AS), alternating k-triangle (AT) and alternating two-path
(A2P) statistics. These structural parameters are the same as those used in
Pattison et al. (2013).

In addition, some of the networks have a binary attribute on each node.
For this paper we have done the most extensive exploration on binary at-
tributes. Our preliminary results for categorical and continuous attributes
are in Appendix C. For those attributes shown as “50/50” in Table 1, 50%
of the nodes have the True value for the attribute, and the other 50% False.
Similarly, for the networks labeled “70/30”, 70% of the nodes have the True
value for the attribute. For those networks with an attribute, there are an
additional two parameters, activity (ρ), and interaction (ρB). The networks
are sampled from a MCMC simulation, with sufficient burn-in (of the order of
107 iterations for 5000 node networks and 108 iterations for 10000 node net-
works) to ensure initialization effects are minimized, and samples are taken
sufficiently far apart (here separation of the order of 106 iterations) to ensure
that they are essentially independent. Table 2 shows summary statistics of
the simulated networks, Figure 3 shows a visualization of a single snowball
sample from one of the 5000 node simulated graphs, and Figure 4 shows the
distribution of snowball sample sizes across 2000 samples from the simulated
5000 node networks, while Figure 5 shows the distribution of the number of
nodes in the inner waves (that is, all nodes except those in the outermost
wave of the snowball sample) of the same samples. This latter number is
important as the ties in the outermost wave are fixed in the simulations used
during the estimation procedure, so it is the size of the inner waves of the
sample that is most relevant for this process.

We refer to a network with a binary attribute as “balanced” when ρB =
−2ρ. That is, there is no “differential homophily”. Table 3 shows the condi-
tional log-odds for tie formation between two nodes with a binary attribute,
and illustrates how “differential homophily” arises. If ρB = −2ρ then there
is no “differential homophily”, since then the parameter for homophily be-
tween two nodes without the binary attribute (top left quadrant) is equal to
the parameter for homophily between two nodes with the binary attribute
(bottom right quadrant).

Deciding on the snowball sampling parameters to use involves a tradeoff
between the size of the samples and the number of samples to take. Is it
better to have a large number of small samples, or a smaller number of larger
samples? One parameter, the number of samples, is chosen directly, but the
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N Attributes Edge (θL) AS AT A2P ρ ρB
5000 None -4.0 0.2 1.0 -0.2
5000 50/50 -4.0 0.2 1.0 -0.2 0.2 0.5
5000 70/30 -4.0 0.2 1.0 -0.2 0.2 0.5
5000 50/50 balanced -4.0 0.2 1.0 -0.2 -0.25 0.5

10000 None -4.0 0.2 1.0 -0.2

Table 1: Parameters of the simulated networks. The value in the Attributes column
shows the percentage of nodes which have, respectively, the values of True and False for
their binary attribute, and whether the attribute parameters are “balanced”. For networks
with attributes, the ρ and ρB columns then show, respectively, the activity and interaction
parameter values.

N Attributes Mean Mean Mean Mean global
components degree density clustering coefficient

5000 None 1.00 8.76 0.00175 0.02451
5000 50/50 1.00 9.54 0.00191 0.02661
5000 70/30 1.00 9.99 0.00200 0.02762
5000 50/50 balanced 1.01 8.51 0.00170 0.02428

10000 None 1.00 10.04 0.00100 0.01553

Table 2: Statistics of the simulated networks.

0 1
0 θL θL + ρ
1 θL + ρ θL + 2ρ+ ρB

Table 3: Contingency table showing the conditional log-odds for tie formation on a node
depending on the False (0) or True (1) value of its binary attribute. θL is the edge (density)
parameter, ρ is the activity parameter, and ρB is the interaction parameter. If ρβ = −2ρ
there is no “differential homophily”.
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Wave

0 1 2

Figure 3: A snowball sample with 10 seeds and 2 waves from a graph drawn from the
5000 node network simulations. This snowball sample has 629 nodes, of which 10 are seed
nodes (wave 0), 75 are in wave 1, and 544 are in wave 2.
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snowball sample size: mean = 707.5, sd = 50.27

Number of nodes in snowball sample
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Figure 4: Histogram of 10 seed, 2 wave snowball sample sizes over all 2000 snowball samples
(20 samples from each of the 100 graphs) from the 5000 node network simulations.
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snowball sample inner waves size: mean = 94.85, sd = 6.072

Number of nodes in snowball sample inner waves
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Figure 5: Histogram of the number of nodes in the inner waves for the 10 seed, 2 wave
snowball over all 2000 snowball samples (20 samples from each of the 100 graphs) from
the 5000 node network simulations.
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sample size distribution, for a particular network, is controlled indirectly
by the number of seed nodes and the number of waves. In our simulation
experiments we fix the number of samples at 20 (each fit by its own parallel
task), but we still need to choose the number of seeds and the number of
waves. In a situation such as this, where we know the entire network and
are performing the snowball sampling computationally, we can explore the
consequences of these parameters by varying their values, and observing the
results, as shown in Figure 6. This figure shows two outcomes for a given
value of the number of waves and number of seeds: in the top row, the number
of samples in which a given node appears, and in the bottom row, the size of a
sample. Figure 7 shows the same results, but counting only nodes in the inner
waves. We want a small number of samples in which a node from the inner
waves appears; the more samples in which the same node appears, the more
our assumption of well-separated regions is violated (overlap in itself does
however not imply that regions are not separated according to the definition
of Pattison et al. (2013) — a node may belong to many separating sets).
We also want the size of the samples to be small enough to be estimated in
reasonable time, but not so small that parameters cannot be estimated.

From Figure 6, we can see that using 3 waves results in samples that are
very large, with more than half the network being covered when 5 or more
seeds are used. Additionally, Figure 7 shows that the number of samples in
which a given inner wave node appears grows quite quickly with the number
of seeds, leading to the possibility of an inner wave node appearing in more
than half of the samples when 10 seeds are used. When only 1 wave is used,
the resulting networks are very small, and do not contain enough structure
for useful estimation. Hence it appears most reasonable to use 2 waves.

In the following results, based on these considerations, we take 20 snow-
ball samples, with 10 seed nodes and 2 waves, from each network. The
conditional estimation for each of the 20 snowball samples is performed in
parallel. Note that when estimations are performed with fixed density (the
density of the simulated networks in the MCMC procedure is fixed at the
observed value in each snowball sample), no edge (θL) parameter is estimated.

Figure 8 shows the elapsed time for estimating the parameters of the 5000
node network (with no attributes) using snowball sampling and conditional
estimation. Because each of the 20 snowball samples is estimated in parallel,
this elapsed time is the maximum estimation time over the 20 snowball sam-
ples. Figure 9 shows the total CPU time taken for the estimation, that is,
the sum of the 20 snowball sample estimation times. By way of comparison,
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Figure 6: Number of samples in which a node appears (top panel), and the number of
nodes in a sample (bottom panel), for a single instance from the simulated 5000 node
networks with 50/50 binary attributes, for 20 snowball samples.
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Figure 7: Number of samples in which a node from the inner waves appears (top panel),
and the number of inner wave nodes in a sample (bottom panel), for a single instance from
the simulated 5000 node networks with 50/50 binary attributes, for 20 snowball samples.
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mean total estimation time =  0.14 hours
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Figure 8: Histogram of elapsed time over the 100 samples from the simulated 5000 node
networks (no attributes, fixed density). Each of the 20 snowball samples is estimated in
parallel, so the elapsed time here is the longest time that it takes to estimate any of the
20 snowball samples.

using PNet (on the same hardware) to estimate a randomly chosen one of
these sampled networks takes on average 83.5 hours (averaged over 8 PNet
estimations of the same network). So the total CPU time taken for the es-
timate using snowball sampling and conditional estimation is on the order
of one hour, compared to approximately three days for estimating the entire
network with PNet. Further, the elapsed time can be reduced even more by
estimating the snowball samples in parallel, as shown in Figure 8, where by
using 20 parallel tasks the elapsed time for the estimation is on average less
than 10 minutes.

Figure 10 provides a comparison of the sampling distributions of the
pooled estimator µ̂wls

θ and the complete data MLE based on 100 graphs of
size N = 5000 from the model in Table 1. The complete data MLEs are cal-
culated using the Geyer-Thompson method of Hunter and Handcock (2006)
based on one importance sample of 4100 graphs from the true model (not
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mean total estimation CPU time =  1.1 hours
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Figure 9: Histogram of total CPU time over the 100 samples from the simulated 5000
node networks (no attributes, fixed density). This is the sum of the CPU time taken for
each of the 20 snowball samples, which would be the elapsed time taken if estimated using
a single processor, no parallelism and naive initializations.
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re-generating graphs saves us considerable computational time but makes
estimates more approximate; some of the 100 graphs were on the relative
boundary of the convex hull induced by the importance sample and had to
be excluded from analysis).

There is generally a good correspondence between the sampling distri-
butions in terms of location and the greater variance of µ̂wls

θ is what we
would expect given that this estimator is less efficient. As noted in Pattison
et al. (2013), the bias for the conditional snowball estimator of the density
(and alternating star parameter) is somewhat more marked than for other
parameters, suggesting that conditioning on density would be a sensible way
of removing what is essentially a nuisance parameter. (For a treatment of
conditional ERGMs see Snijders and van Duijn (2002)). The sampling frac-
tion for these samples are roughly 20% of nodes (compare Figure 6) or 2%
if only inner nodes are considered (compare Figure 7) and the overlap of
inner nodes is low (according to top panel of Figure 7, nodes mostly appear
in at most one inner node-set). This means that µ̂wls

θ is pooled across ap-
proximately independent samples that together cover a small fraction of the
network. This in turn implies that µ̂wls

θ is very weakly associated with the
MCMCMLE that is based on the entire network (see Appendix A for a more
detailed illustration of this principle).

In terms of power (one minus the type II error probability) the estimators
appear to be comparable for this set of parameters. Both estimators have
very low power for the density and alternating k-star parameters.1 In the
sequel we will therefore not attach much importance to the type II errors of
these two parameters. For this particular set of estimates (Figure 10) it is
not meaningful to compare the bias and root mean square error (RMSE) of
the estimators as the range of estimates for the complete data MLE is large
and there are a lot of extreme values, something which is presumably largely
to do with the approximation (mentioned above).

Table 4 shows the bias (“Bias”), root mean square error (“RMSE”) and
standard deviation of the estimated value over the 100 simulated networks,
for each of the ERGM parameters (“Effect”) in the simulated networks. The
bias is the mean of the difference between the estimate and the true value,

1Further investigation shows that the power also is low for these parameters when
using full network MLEs such as those implemented in statnet and PNet. (Data not
shown; available on request.)

22



−
3

0
−

1
0

1
0

0.000.06

E
d

g
e

−
5

0
5

0.00.20.4

A
S

0
.9

5
1

.0
0

1
.0

5

01020

A
T

−
0

.2
2

−
0

.1
8

−
0

.1
4

02040

A
2

P

0
.3

0
.5

0
.7

048

ρ
B

0
.0

0
.1

0
.2

0
.3

051015

ρ

Figure 10: Distribution of the pooled WLS estimates (red, dashed) and MCMC MLE
(black, solid) with true values indicated by vertical lines. Population graph N = 5000 and
91 estimates (a number of Newton-Raphson estimation runs did not converge).

23



N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None A2P 0.0054 0.0177 0 0 4 0.0169 12.74
5000 None AT -0.0223 0.0292 0 0 4 0.0190 12.74
5000 None AS 0.1357 0.2231 78 69 85 0.1781 12.74
5000 70/30 A2P 0.0143 0.0177 0 0 4 0.0106 19.02
5000 70/30 AT -0.0214 0.0249 0 0 4 0.0128 19.02
5000 70/30 AS 0.1676 0.2102 54 44 63 0.1276 19.02
5000 70/30 ρ -0.0720 0.0880 66 56 75 0.0508 19.02
5000 70/30 ρB -0.0145 0.0538 0 0 4 0.0520 19.02
5000 50/50 balanced A2P 0.0002 0.0150 0 0 4 0.0151 15.34
5000 50/50 balanced AT -0.0198 0.0267 0 0 4 0.0180 15.34
5000 50/50 balanced AS 0.1370 0.2324 75 66 82 0.1887 15.34
5000 50/50 balanced ρ -0.0138 0.0486 4 2 10 0.0468 15.34
5000 50/50 balanced ρB 0.0068 0.0507 0 0 4 0.0505 15.34
5000 50/50 A2P 0.0130 0.0176 0 0 4 0.0119 17.96
5000 50/50 AT -0.0237 0.0280 0 0 4 0.0150 17.96
5000 50/50 AS 0.1300 0.1949 58 48 67 0.1460 17.96
5000 50/50 ρ -0.0704 0.0820 40 31 50 0.0423 17.96
5000 50/50 ρB 0.0028 0.0436 0 0 4 0.0437 17.96

10000 None A2P -0.0033 0.0179 0 0 4 0.0177 8.56
10000 None AT -0.0088 0.0235 0 0 4 0.0219 8.56
10000 None AS 0.1504 0.2583 82 73 88 0.2111 8.56

Table 4: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks, including false negatives (type II error rate) over the 100 simulated
networks, using the median point estimator with fixed density. True parameter values for
each model are shown in Table 1.
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and the RMSE is the square root of the mean squared difference between
the estimate and the true value. Table 4 also shows the type II error rate
in inference, that is, the false negative rate. This is the percentage of ex-
periments (over the 100 simulated networks) in which the estimate has the
wrong sign or the confidence interval covers zero (so we cannot reject the null
hypothesis that the parameter for the effect is zero). The 95% confidence in-
terval shown for these estimated error rates is the confidence interval for
the binomial proportion computed using the Wilson score interval (Wilson,
1927). We include this information as often when analyzing social networks,
we are interested not specifically in the magnitude of an effect, but rather
in whether or not it is significant (either positive or negative); the intervals
used for Tables 4 through 7 and Appendix B are 3 standard errors. In addi-
tion, the table shows the mean number of snowball samples (out of 20) for
which the parameter estimates converge. Table B.13 shows the same data,
but using the WLS point estimator rather than the median point estimator.

We can see that, with two exceptions, the bias and RMSE are small (rel-
ative to the effect size), and correspondingly the type II error (false negative
rate) is small or, usually, zero. The exceptions are the alternating k-star pa-
rameter (AS) for all networks, and the activity (ρ) parameter for the networks
with binary attributes that are not “balanced”. For the AS parameter, this
is what we would expect based on the evidence in Figure 10. Furthermore,
the high RMSE and low power on the Edge and alternating k-star parame-
ters are not an issue specific to snowball sampling or conditional estimation,
but also occurs in the full network MLE methods implemented in PNet and
statnet.

The results just discussed are for estimations in which the density is
fixed. Table B.14 and Table 5 show the corresponding results when density
is not fixed in estimation. Now, in addition to AS, the Edge parameter
(not estimated when density is fixed) also has large error (bias, RMSE, false
negative rate) values. As Edge is essentially a nuisance parameter this is not
a cause for concern. Note that the AS (as a parameter which helps control the
degree distribution) and Edge parameters are interdependent, and so bias in
the Edge parameter causes the AS parameter to be biased also. Hence when
conditioning on density, the bias and RMSE for AS is considerably reduced
(Table B.13 and Table 4 show much lower values for bias and RMSE on the
AS parameter than Table B.14 and Table 5).

However, one more parameter has a very large false negative rate, namely
activity (ρ), particularly when the binary attribute is not balanced. Hence
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in estimating real networks in which a binary attribute is not balanced, it
seems likely that an activity effect on this attribute may be missed when
using this technique, unless the effect size is strong.

Another difference between the results for estimation with fixed density
(Table B.13 and Table 4) and when density is not fixed (Table B.14 and
Table 5), is that fixing the density results in a lower fraction of converged
estimates (78% versus 97% when density is not fixed). Fixing the density
results in reduced bias and RMSE, and consequently better power (and, as
we shall see, a reduced type I error rate on certain parameters) in inference.
Estimating with fixed density results in fewer converged estimates, a fact that
itself might lead to bias due to only a small number of converged estimates
being used in the meta-analysis. Although this does not appear to be too
problematic for our simulated networks, for which by definition we know
the most appropriate model, this could be an important issue in estimating
parameters of a model for empirical networks. As we shall see in Section 7,
in such cases it may well be necessary to not fix the density in order to obtain
a reasonable number of converged estimates.

The previous simulations allow us to measure errors in the estimation,
and the rate of type II errors in inference, that is, the false negative rate. In
order to measure type I errors in inference, that is, the false positive rate,
for an effect, we need simulated network data that does not have that effect
present (its corresponding parameter is zero). Hence for each of the simulated
networks, we simulate, for each of the effects, another network distribution in
which the effect’s parameter is set to zero. This then gives us another set of
100 networks from a distribution, but with a null effect, so in estimating the
parameters for these networks we can test for false positives with respect to
that effect. The false positive rate is then the percentage of experiments in
which, for an estimate of a null effect, the confidence interval did not include
zero.

Table B.15 and Table 6 show the results of these experiments, when
density is fixed in estimation. Note that the alternating two-path effect
(A2P) is not present. This is because when the A2P parameter is set to
zero, the simulated graphs have very high density (above 0.2, the nodes
having a mean degree greater than 1000), and so are both unrealistic as
social networks, and also impractical to estimate in reasonable time since
the high density results in the snowball sample sizes approaching the size
of the full network. Therefore they have been excluded. Using the median
point estimator (Table 6), in all cases the type I error rate is less than 10%,
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N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None A2P 0.0345 0.0469 6 3 12 0.0320 20.00
5000 None AT -0.0018 0.0440 0 0 4 0.0442 20.00
5000 None Edge 6.1230 11.4700 99 95 100 9.7510 20.00
5000 None AS -1.7240 3.0530 100 96 100 2.5330 20.00
5000 70/30 A2P 0.0214 0.0343 0 0 4 0.0270 19.88
5000 70/30 AT -0.0039 0.0428 0 0 4 0.0428 19.88
5000 70/30 Edge 13.3700 20.3400 100 96 100 15.4100 19.88
5000 70/30 AS -3.5420 5.2590 100 96 100 3.9080 19.88
5000 70/30 ρ 0.0495 0.1419 81 72 87 0.1337 19.88
5000 70/30 ρB -0.0339 0.1481 41 32 51 0.1449 19.88
5000 50/50 balanced A2P 0.0254 0.0424 7 3 14 0.0341 17.68
5000 50/50 balanced AT -0.0063 0.0518 0 0 4 0.0517 17.68
5000 50/50 balanced Edge 8.5920 14.4100 95 89 98 11.6300 17.68
5000 50/50 balanced AS -2.3120 3.7550 100 96 100 2.9740 17.68
5000 50/50 balanced ρ -0.0100 0.1052 58 48 67 0.1053 17.68
5000 50/50 balanced ρB 0.0020 0.1143 15 9 23 0.1149 17.68
5000 50/50 A2P 0.0199 0.0311 1 0 5 0.0240 20.00
5000 50/50 AT 0.0061 0.0423 0 0 4 0.0420 20.00
5000 50/50 Edge 8.4380 14.2800 100 96 100 11.5800 20.00
5000 50/50 AS -2.2470 3.6810 100 96 100 2.9300 20.00
5000 50/50 ρ -0.0121 0.0979 80 71 87 0.0976 20.00
5000 50/50 ρB 0.0132 0.1042 8 4 15 0.1039 20.00

10000 None A2P 0.0101 0.0347 0 0 4 0.0333 19.65
10000 None AT -0.0060 0.0510 0 0 4 0.0509 19.65
10000 None Edge -0.3986 16.1600 95 89 98 16.2400 19.65
10000 None AS -0.0418 4.1230 97 92 99 4.1440 19.65

Table 5: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks, including false negatives (type II error rate) over the 100 simulated
networks, using the median point estimator, when density is not fixed. True parameter
values for each model are shown in Table 1.
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N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None AT -0.0087 0.0683 3 1 8 0.0681 18.94
5000 None AS 0.2483 0.4185 6 3 12 0.3386 10.16
5000 70/30 AT -0.0027 0.0477 3 1 8 0.0479 19.96
5000 70/30 AS 0.2394 0.2925 5 2 11 0.1689 16.08
5000 70/30 ρ -0.0419 0.0753 6 3 12 0.0629 18.17
5000 70/30 ρB -0.0099 0.0646 4 2 10 0.0641 18.17
5000 50/50 balanced AT -0.0091 0.0706 3 1 8 0.0703 19.16
5000 50/50 balanced AS 0.1648 0.4174 7 3 14 0.3854 10.48
5000 50/50 balanced ρ -0.0245 0.0500 7 3 14 0.0438 16.96
5000 50/50 balanced ρB -0.0022 0.0639 2 1 7 0.0642 15.17
5000 50/50 AT -0.0128 0.0480 0 0 4 0.0465 19.87
5000 50/50 AS 0.2369 0.2949 5 2 11 0.1764 14.00
5000 50/50 ρ -0.0245 0.0500 6 3 12 0.0438 16.96
5000 50/50 ρB 0.0103 0.0526 4 2 10 0.0519 17.25

Table 6: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with a zero effect to find false positives (type I error rate) over the 100
simulated networks, using the median point estimator with fixed density.

however the results for the WLS point estimator (Table B.15) are not as
good, with four cases in which the type I error rate is 10% or greater.

Table B.16 and Table 7 show the corresponding results when density is
not fixed in estimation. It is clear that the median point estimator (Table 7)
is a better choice in this case, although there are still four cases in which the
type I error rate is 10% or greater.

We have found that the median estimator generally performs better than
the WLS estimator currently used in the network literature. In terms of
type I errors, results appear to be excellent for a median estimator with
fixed density models. Even when density is not fixed, the type I error rates
are less than 10%, except for network closure effects (AT) which may extend
out past 15%. We need to do more work to determine whether larger seed
set size or more samples will enable us to lower the AT type I error rates.

In terms of power (i.e. one minus the type II error probability), median
estimators again perform better, especially in fixed density models. Never-
theless, power for the star effect was very poor. Power was also poor for
attribute activity, perhaps due to small effect size. However, power for the
interaction parameter is generally good, except when density is not fixed and

28



N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None AT -0.8790 1.0310 39 30 49 0.5419 18.16
5000 None AS -0.8238 1.7170 1 0 5 1.5140 19.78
5000 70/30 AT -0.1851 0.5475 10 6 17 0.5179 16.71
5000 70/30 AS -1.9680 2.7820 1 0 5 1.9760 18.70
5000 70/30 ρ 0.0307 0.1503 5 2 11 0.1478 19.13
5000 70/30 ρB -0.0328 0.1395 0 0 4 0.1362 19.25
5000 50/50 balanced AT -0.4453 0.8633 16 10 24 0.7433 13.28
5000 50/50 balanced AS -0.9863 1.7070 3 1 9 1.4000 14.13
5000 50/50 balanced ρ -0.0101 0.0983 1 0 5 0.0983 18.71
5000 50/50 balanced ρB -0.0086 0.1293 2 1 7 0.1297 17.22
5000 50/50 AT -0.2859 0.6725 12 7 20 0.6118 15.94
5000 50/50 AS -1.3370 2.3210 1 0 5 1.9070 17.03
5000 50/50 ρ -0.0101 0.0983 1 0 5 0.0983 18.71
5000 50/50 ρB -0.0089 0.1388 3 1 8 0.1392 18.07

Table 7: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with a zero effect to find false positives (type I error rate) over the 100
simulated networks, using the median point estimator, when density is not fixed.

the attribute value is not evenly distributed across nodes (70/30 in our case).
In these experiments, we have used 20 snowball samples, each with 2

waves from 10 seed nodes, giving a total of 200 seed nodes. We might then ask
how these results compare with using the conditional estimation technique of
Pattison et al. (2013) directly, with the same number of seeds: that is, taking
one large snowball sample using the same number of waves and same total
number of seeds, with no pooling and hence no meta-analysis. We attempted
to perform such a comparison using the 5000 node simulated networks with
50/50 binary attributes (not balanced). Taking a single snowball sample
with 2 waves and 200 seeds results in an average snowball sample size of
4845 nodes (that is, almost the entire network) and an average of 1736 nodes
in the inner waves. These are very large networks to estimate; no such sample
could be estimated within a seven day time limit. This is one aspect of the
difference between the pooled estimation method described here and using
the Pattison et al. (2013) conditional estimation method directly: the former
can be used to obtain estimates, using the same total number of seed nodes,
for networks far larger than the latter.

Since 5000 node networks are too large to use conditional estimation
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directly with this many seeds, we performed the experiments on 1000 node
networks, simulated with the same parameters. Again using 20 samples
with 10 seeds each and 2 waves (so 200 seeds for the single snowball sample
using conditional estimation directly with no pooling), the single snowball
sample has average size 998 nodes (again nearly the whole network), and the
average number of nodes in the inner waves is 809, so conditional estimation
is possible. By comparison, using 20 samples with 10 seeds each for pooling,
the average snowball sample size is 386 nodes with only 76 nodes in the
inner waves. Using the median point estimator and BCa error estimator,
we found, comparing the pooled estimator to using conditional estimation
directly, that the results for AT and AS are similar, however using conditional
estimation directly results in reduced bias and RMSE for A2P, Edge, ρ,
and ρB, giving significantly better power for the latter three effects (Edge,
Activity and Interaction). Regarding the type I error rate, using conditional
estimation directly gives significantly better results on the alternating k-
triangle parameter, however there is no significant difference for the other
parameters.

From this example it seems that using the same number of seeds with
conditional estimation directly (no pooling and hence no meta-analysis) can
reduce bias and increase power and reduce the type I error rate on some pa-
rameters. However for larger networks the pooling technique allows a large
number of seeds to be used, taking advantage of parallel computing. Us-
ing the same number of seeds with conditional estimation directly becomes
computationally impractical, allowing the use of only a single thread of com-
putation and requiring an impractically long time to converge due to the
larger size of the single snowball sample.

In summary, then, without strong effect sizes, star effects and actor ac-
tivity effects may be difficult to detect. Homophily effects may be difficult
to detect when density is not fixed and attributes are not distributed equally
across nodes. Of course, if an effect is significant, the issue of power becomes
irrelevant. In that case, based on these results, we can regard our inference
of an effect as reliable when we use median estimators and fixed density, with
the caveat that this might be subject to a bias due to too small a fraction of
samples reaching a converged estimate when density is fixed. When density
is not fixed, the problem of samples not reaching a converged estimate is
reduced, however the type I error on the AT parameter is increased. A rec-
ommended procedure therefore, would be to attempt estimation with fixed
density, and if too many samples fail to reach a converged estimate, repeat
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with the density not fixed.

7. Example application to empirical networks

7.1. Parameter Estimation

In the previous section we applied our method to simulated networks.
Since those networks were generated from an ERGM, we would expect that
an ERGM can be fitted, and the assumption that configurations occur ho-
mogeneously across the network holds, so this is the best case for any ERGM
estimation method. With empirical networks, however, it is not guaranteed
to be so easy to fit models. For a method to be useful it is important that
we demonstrate that it can also be applied to such networks. As an illustra-
tive example, we apply our method to some collaboration networks from the
igraph Nexus network data set repository (http://nexus.igraph.org). We
do not fix the density in estimation, as doing so was found to result in more
non-converged estimates than when density is not fixed, and use the me-
dian point estimator and BCa bootstrap error estimation. For the simulated
networks, converged estimates are obtained for 87% of snowball estimates,
so although we have been excluding those samples that do not converge, in
fact this happens relatively infrequently. For empirical networks, however,
quite often we do not obtain a converged estimate for a snowball sample,
so in results we also show Ns, the number of snowball samples for which a
converged estimate was obtained.

The first network is the netscience network science collaboration net-
work (Newman, 2006). This network has 1589 nodes, so it is small enough
that we can also estimate ERGM parameters directly for the full network
with PNet, with the results shown in Table 8. This estimation took approx-
imately 9.5 days to converge on the same hardware used for the snowball
sampling experiments. This table also shows the parameters estimated using
snowball sampling (2 waves, 20 seeds, 20 snowball samples) and conditional
estimation, with 2 and 3 standard error confidence intervals. Running all 20
estimations in parallel, the elapsed time for this estimation is only 5 hours,
and the total CPU time used by all 20 tasks is only 15 hours. As can be
seen from this table, there is a good agreement between the PNet estimation
and snowball sampling estimation. The snowball 2 standard error confidence
intervals overlap a considerable part of the intervals given by the MLE ±
2 std. error. The most noteworthy result is the significant and very strong
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PNet Snowball
Effect Estim. Std. Conv. 2 std. err. C.I. 3 std. err. C.I.

error stat. Ns Estim. lower upper lower upper

A2P -0.0216 0.0085 0.0493 * 20 -0.0451 -0.1183 -0.0098 * -0.1281 0.0380
AT 3.8091 0.0602 -0.0401 * 20 3.7423 3.2890 4.0379 * 3.1692 4.3155 *
Edge -7.3165 0.1335 -0.0321 * 20 -7.9978 -8.4463 -7.4144 * -8.7875 -7.2081 *
AS -0.7046 0.0635 -0.0784 * 20 -0.4655 -0.5938 -0.3013 * -0.6893 -0.2417 *

Table 8: ERGM parameter estimates for the network science collaboration network (1589
nodes), estimated by PNet on the full network, and by snowball sampling and conditional
estimation. The convergence statistic for PNet is obtained by simulating from the pa-
rameter estimates, extracting a sample of 1000 graphs, and comparing the observed value
of each statistic with the mean from the sample distribution. For PNet, asterisks indi-
cate significance according to the approximate Wald test for the nominal 95% confidence
interval. For snowball sampling, asterisks indicate significance according to the 2 and 3
standard error confidence intervals. Ns is the number of snowball sample estimates that
converged, out of 20.

alternating k-triangle (AT) effect, meaning that the network has a high de-
gree of transitivity (closure), as we would expect in a collaboration network.
When using the 3 standard error confidence interval that we have used in
the previous sections, the alternating k-two-path effect (A2P) is no longer
considered significant.

The other two collaboration networks we use as examples are the condmatcollab2005
condensed matter physics collaboration network (Newman, 2001, 2004), and
the astrocollab astrophysics collaboration network (Newman, 2001). These
networks have 40 421 and 16 706 nodes, respectively, and so are too large to
allow estimation of ERGM parameters for the entire network in reasonable
time.

For the condensed matter collaboration network, we use the same snow-
ball sampling parameters we have used so far (2 waves, 10 seeds, 20 snowball
samples). The results are shown in Table 9. Similarly to the network science
collaboration network, the result, as expected for a collaboration network,
shows a significant strong alternating k-triangle effect. This estimation took
approximately 23 days (with 20 parallel tasks), and as can be seen from
Table 9, a converged estimate was obtained for only 15 of the 20 snowball
samples.

For the astrophysics collaboration network, we use 8 seeds for each of the
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Effect Ns Estimate C.I.
lower upper

A2P 15 -0.0043 -0.0107 0.0020
AT 15 5.2625 3.8186 6.7063 *
Edge 15 -10.3796 -14.3140 -6.4452 *
AS 15 -0.4868 -0.7092 -0.2644 *

Table 9: ERGM parameters for the condensed matter physics collaboration network (40
421 nodes), estimated using snowball sampling and conditional estimation. Ns is the num-
ber of snowball sample estimates that converged, out of 20. Asterisks indicate significance
according to the 3 standard error confidence interval.

Effect Ns Estimate C.I.
lower upper

A2P 11 -0.0091 -0.0199 0.0018
AT 11 6.7772 2.5540 11.0004 *
Edge 11 -12.1147 -50.4044 26.1750
AS 11 -0.0518 -3.1544 3.0508

Table 10: ERGM parameters for the astrophysics collaboration network (16 706 nodes),
estimated using snowball sampling and conditional estimation. Ns is the number of snow-
ball sample estimates that converged, out of 20. Asterisks indicate significance according
to the 3 standard error confidence interval.

snowball samples (still using 2 waves and 20 snowball samples), in order to
obtain snowball samples that are small enough to be estimated in a reason-
able time. Trial and error guided by experience are likely to be necessary in
choosing snowball sampling parameters. As a general rule, we have tried to
find parameters (specifically, the number of seed nodes; in all experiments
we have used two waves) so that the mean snowball sample size is around
1000 nodes (or preferably less), with a size distribution so that not too many
samples have more than 1500 nodes. For example the mean snowball sam-
ple size in the condensed matter collaboration network above is 949 nodes
(range: 271–1843), and for the astrophysics collaboration network with the
parameters used here, 1456 nodes (range: 554–3569).

The results for the astrophysics collaboration network are shown in Ta-
ble 10. This estimation took approximately 30 days with 20 parallel tasks.
Again, as expected, the most notable feature is the strong significant alter-
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nating k-triangle effect. We also note that a converged estimate is obtained
for only 11 over the snowball samples, which may lead to bias by discarding
such a large fraction of non-converged samples.

7.2. Estimation Time

The fact that estimations are taking several days (or even weeks) and
many snowball samples do not lead to converged estimates suggests there
may be faster ways to obtain parameter estimates. For example, we may
be better off having many more snowball samples, each of which is smaller.
Therefore we also try the estimations for both networks with 100 snowball
samples, but only 3 seeds in each (still using 2 waves). Note that, unlike the
simulated network data (Figure 4), these distributions are very positively
skewed.

For these estimations we run all 100 snowball sample conditional esti-
mations in parallel. Table 11 shows the results after all snowball samples
have either converged (or failed to converge by reaching the iteration limit
or being detected as degenerate), which took 102 hours elapsed time, leading
to Ns = 63 converged estimates. The results are consistent with those in
Table 9.

Table 11 also shows the results after the first seven hours of elapsed time,
at which point Ns = 57 samples have converged estimates. The results
are completely consistent with those obtained after running for the full 102
hours. Hence the additional 95 hours, during which time only 6 more con-
verged estimates were obtained, has not contributed much to the final model
estimates.

Table 12 shows the results of a similar experiment with the astrophysics
collaboration network, in which it took over 11 days for 42 of the 100 snow-
ball samples to converge (the remaining 58 reaching the iteration limit or
being found degenerate). In this case, the Edge and alternating k-star (AS)
parameters are found to be significant, when they were not in the earlier
experiment with fewer samples (Table 10). This table also shows the results
after the first seven hours of elapsed time, at which point Ns = 32 samples
have converged estimates. The results are completely consistent with those
after the full 11 days, but with the confidence intervals (with the exception
of that for the Edge parameter) reduced when using more samples. Hence
the additional 272 hours of elapsed time has not changed any conclusions,
but slightly increased confidence in the estimates.
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Results at completion Results after seven hours
Effect Ns Estimate C.I. Ns Estimate C.I.

lower upper lower upper
A2P 63 -0.0004 -0.0044 0.0037 57 0.0001 -0.0045 0.0046
AT 63 4.3729 3.6009 5.1448 * 57 4.2161 3.4736 4.9586 *
Edge 63 -9.2179 -10.5882 -7.8477 * 57 -8.8726 -10.2970 -7.4482 *
AS 63 -0.6983 -1.1029 -0.2936 * 57 -0.8375 -1.2084 -0.4666 *

Table 11: ERGM parameters for the condensed matter collaboration network (40 421
nodes), estimated using snowball sampling (100 snowball samples, each with 3 seeds and
2 waves) and conditional estimation. Ns is the number of snowball sample estimates that
converged, out of 100. Asterisks indicate significance according to the 3 standard error
confidence interval. This estimation took 102 hours elapsed time (with 100 parallel tasks).

Results at completion Results after seven hours
Effect Ns Estimate C.I. Ns Estimate C.I.

lower upper lower upper
A2P 42 -0.0032 -0.0084 0.0021 32 -0.0030 -0.0109 0.0049
AT 42 4.9829 4.0210 5.9448 * 32 4.4372 3.2447 5.6298 *
Edge 42 -10.2733 -12.7103 -7.8363 * 32 -9.5459 -11.3248 -7.7669 *
AS 42 -0.6128 -1.1944 -0.0313 * 32 -0.6751 -1.3127 -0.0374 *

Table 12: ERGM parameters for the astrophysics collaboration network (16 706 nodes),
estimated using snowball sampling (100 snowball samples, each with 3 seeds and 2 waves)
and conditional estimation. Ns is the number of snowball sample estimates that converged,
out of 100. Asterisks indicate significance according to the 3 standard error confidence
interval. This estimation took 279 hours elapsed time (with 100 parallel tasks).
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Figure 11 and Figure 12 show histograms of the individual snowball sam-
ple estimation times in the condensed matter and astrophysics collaboration
networks, respectively. The implication of the long tail in these distributions
is that, although we cannot estimate in advance how long the estimation
will take, we may want to terminate the whole estimation process after some
number of samples have converged, if we think we have enough converged
estimates, and we do not want to take too much longer. A heuristic for de-
ciding if enough snowball samples have been obtained is to examine a plot of
the estimates (with error bars) plotted against the number of snowball sam-
ples, as shown for example in Figure 13. If the estimates have settled to a
stable value then probably sufficient snowball samples have been estimated.
In Figure 13, for example, clearly using fewer than 20 snowball samples is un-
reliable, but little improvement is obtained once around 40 snowball samples
have been estimated.

For these networks, for example, we may have chosen to terminate the es-
timation after seven hours, or when half of the estimates have converged (or
failed to converge by reaching the iteration limit or being found to be degen-
erate), after approximately 6 and 20 hours respectively for the two networks.
Note this is another advantage of parallelism: if we ran all 100 estimations
one after the other on a single processor, since we do not necessarily know
which ones will take a long time, we might be unlucky and wait dozens of
hours before getting any results. However by running all estimations in par-
allel, we can just stop whenever we have enough estimations, or at some
predefined elapsed time limit, and be sure that any estimations that could
have converged within that time will have done so.

8. Conclusion

We have shown that it is possible to estimate ERGM parameters for
networks of much greater size than has been possible to date. Combining
multiple snowball samples from a large network with a recent conditional
estimation procedure to fit ERGMs (Pattison et al., 2013) orders of magni-
tude can be gained in possible network size and estimation time. Further,
because estimation of the samples can be done in parallel, it is possible to
take advantage of modern high performance computing clusters to accelerate
the estimation process using parallelism.

By using simulated networks with known parameters, we have demon-
strated valid statistical inference for homophily and closure. We have shown
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median snowball sample estimation time =  6.1 hours
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Figure 11: Histogram of snowball sample estimation times in the condensed matter col-
laboration network (100 samples, 3 seeds, 2 waves).
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median snowball sample estimation time =  20 hours
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Figure 12: Histogram of snowball sample estimation times in the astrophysics collaboration
network (100 samples, 3 seeds, 2 waves).
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Figure 13: Estimated parameter values (median point estimator) showing 3 standard error
confidence interval (BCa standard error estimator), as the number of snowball samples is
increased.
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that under the conditions of a positive alternating k-star parameter, power
may be low, so that if the effect is statistically significant, then it can be
treated as reliable, but if not, we cannot draw definite conclusions. There
are reasons, both from experience (Snijders et al., 2006) and theory (Chatter-
jee and Diaconis, 2013), to believe that having a positive k-star parameter is
more problematic than a negative one. Even in the absence of snowball sam-
pling, using complete MLE methods such as those implemented in statnet
and PNet, the alternating k-star parameter can be problematic in a similar
manner.

It should be noted that the bias on some parameter estimates, specifically
the alternating k-star parameter, can be very high, especially when density
is not fixed. This issue is not specific to this method, but can also occur
in full network MLE procedures. In such cases estimation of both the Edge
and alternating k-star parameters performs poorly, resulting in low power
on these parameters. Conditioning on density, thereby removing the Edge
parameter from estimation, results in much improved performance in esti-
mating the AS parameter. Development of a bias correction method would
improve the method’s suitability for a goodness-of-fit procedure and its ap-
plicability outside the context of parameter inference, for example simulating
graph populations from estimated parameters.

Fixing the density results in a lower number of converged estimates, which
itself could lead to biased results. Non-convergence can occur due to two
distinct causes. First, the default settings in the stochastic approximation
method (Snijders, 2002) might be inappropriate, and in principle convergence
can be improved adjusting these parameters. Second, the non-convergence
could be caused by an inappropriate model or a pathological sample, such as
one in which there is a very strong hub. This latter situation is much more
problematic, and development of a technique to handle networks with such
strong hubs is ongoing work.

Merely by assuming that ERGM estimates for an entire large network are
meaningful, we have assumed that the configurations of interest occur homo-
geneously across the network. This assumption is true by construction for
our simulated networks, however large they become. For empirical networks,
however, as they become larger this homogeneity assumption would become
less tenable. It may be possible to test for heterogeneity by measuring the
variance of the point estimates of snowball samples, and if it is too large, we
might conclude that we must reject the homogeneity assumption. In such a
case, it may be possible to find homogeneous subsets by isolating network
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communities (Newman, 2004, 2006; Fortunato, 2010) and estimating them
separately, under the assumption that individual communities are internally
homogeneous, although subnetworks consisting of multiple communities are
not.

There are a number of additional ways in which this work could be ex-
tended. Currently, network properties such as the density of the entire net-
work are known but unused. How this extra information might be included
to improve the estimation is left for future work. Recently, a fast technique
for estimating ERGM parameters based on a “stepping” algorithm (Hummel
et al., 2012) has been described. It would be interesting to do direct com-
parisons of estimation time and estimation error. This is left for future work
also. Results from applying the method to networks with categorical and
continuous node attributes are described in Appendix C; extensions for fu-
ture work include the implementation of estimation of networks with dyadic
covariates, the extension of the method to directed and bipartite graphs, and
the development of a goodness-of-fit procedure that can be practically used
on very large networks. Work on some of these extensions is currently under
way.

Appendix A. Correlation between pooled estimator and full data
estimator

For illustration consider the simple example of estimating expected values

for n independent and identically distributed variates Xi
iid∼ X, with E(X) =

µ and V (X) = σ2. Assume that we have one estimator based on all of
the n observations, X̄ = 1

n

∑
Xi, corresponding to the complete data MLE

in our example. Assume further that we have a pooled estimate based on
estimators for k mutually exclusive subsets Aj ⊂ {1, . . . , n}, each of size
|Aj| = m. Let Ȳ = 1

k

∑
j Yj be a pooled estimate based on the partial means

Yj =
∑

i∈Aj
Xi/m (that are clearly independent). The correlation between

the pooled estimator and the estimator using all of the data only depends
on the sampling fraction. More specifically cor(Ȳ , X̄) =

√
km/n, something

which is straightforward to check after noting that we can write

Ȳ X̄ =
1

nkm

(∑
i∈A1

X2
i +

∑
i∈A1

Xi

∑
h6=i

Xh + · · ·+
∑
i∈Ak

X2
i +

∑
i∈Ak

Xi

∑
h6=i

Xh

)

resulting in E(Ȳ X̄) = σ2/n+ µ2.
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This means that if we have a Bernoulli graph with link-probability µ,
then the correlation between a pooled estimate and the density, X̄, will not
depend on µ. If the sample sizes for the partitions are mj rather then equal,
the same result applies with km = m1 + · · · + mk. Similar results may be
obtained for estimators that are more general functions of variables that are
not necessarily independent within subsets.

The interpretation is that under the assumption that the network is ho-
mogenous and that estimates θ̂j are independent, then µ̂wls

θ should not be
interpreted as an approximation to the complete data MLE. This was con-
firmed in pairwise comparisons of estimates in Figure 10. For component
ERGMs investigation (obtainable upon request) shows that there may be
almost as much variation between the pooled estimate (based on Snijders
(2010)) and the complete data MLE as there is variation across pooled esti-
mates even if the latter are unbiased.

Appendix B. Weighted least squares (WLS) point estimator re-
sults

Table B.13, Table B.14, Table B.15, and Table B.16 show the results
of estimating the simulated networks using the WLS point estimator. The
results for the median point estimator are in the main text.
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N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None A2P 0.0126 0.0180 0 0 4 0.0129 12.74
5000 None AT -0.0217 0.0272 0 0 4 0.0165 12.74
5000 None AS 0.1207 0.1780 70 60 78 0.1315 12.74
5000 70/30 A2P 0.0185 0.0205 0 0 4 0.0089 19.02
5000 70/30 AT -0.0198 0.0226 0 0 4 0.0110 19.02
5000 70/30 AS 0.1432 0.1794 30 22 40 0.1085 19.02
5000 70/30 ρ -0.0851 0.0945 51 41 61 0.0412 19.02
5000 70/30 ρB -0.0048 0.0434 0 0 4 0.0434 19.02
5000 50/50 balanced A2P 0.0075 0.0149 0 0 4 0.0130 15.34
5000 50/50 balanced AT -0.0190 0.0252 0 0 4 0.0167 15.34
5000 50/50 balanced AS 0.1198 0.1951 66 56 75 0.1548 15.34
5000 50/50 balanced ρ -0.0108 0.0398 0 0 4 0.0385 15.34
5000 50/50 balanced ρB 0.0041 0.0493 0 0 4 0.0493 15.34
5000 50/50 A2P 0.0193 0.0217 0 0 4 0.0098 17.96
5000 50/50 AT -0.0228 0.0263 0 0 4 0.0131 17.96
5000 50/50 AS 0.1075 0.1607 49 39 59 0.1201 17.96
5000 50/50 ρ -0.0728 0.0811 16 10 24 0.0360 17.96
5000 50/50 ρB -0.0014 0.0380 0 0 4 0.0382 17.96

10000 None A2P 0.0034 0.0146 0 0 4 0.0143 8.56
10000 None AT -0.0074 0.0218 0 0 4 0.0206 8.56
10000 None AS 0.1554 0.2380 66 56 75 0.1812 8.56

Table B.13: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks, including false negatives (type II error rate) over the 100 simulated
networks, using the WLS point estimator with fixed density. True parameter values for
each model are shown in Table 1.
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N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None A2P 0.0447 0.0528 1 0 5 0.0283 20.00
5000 None AT -0.0088 0.0359 0 0 4 0.0350 20.00
5000 None Edge -6.7140 9.5740 50 40 60 6.8590 20.00
5000 None AS 1.4810 2.2950 81 72 87 1.7620 20.00
5000 70/30 A2P 0.0285 0.0361 1 0 5 0.0222 19.88
5000 70/30 AT -0.0054 0.0305 0 0 4 0.0302 19.88
5000 70/30 Edge -7.4800 13.0300 61 51 70 10.7200 19.88
5000 70/30 AS 1.7090 3.2010 78 69 85 2.7200 19.88
5000 70/30 ρ -0.0235 0.1069 87 79 92 0.1048 19.88
5000 70/30 ρB -0.0040 0.1075 2 1 7 0.1079 19.88
5000 50/50 balanced A2P 0.0401 0.0511 3 1 8 0.0318 17.68
5000 50/50 balanced AT -0.0075 0.0411 0 0 4 0.0406 17.68
5000 50/50 balanced Edge -4.5100 7.1260 64 54 73 5.5450 17.68
5000 50/50 balanced AS 0.9884 1.7490 86 78 91 1.4510 17.68
5000 50/50 balanced ρ -0.0192 0.0789 31 23 41 0.0769 17.68
5000 50/50 balanced ρB -0.0018 0.0974 2 1 7 0.0978 17.68
5000 50/50 A2P 0.0269 0.0341 1 0 5 0.0210 20.00
5000 50/50 AT 0.0019 0.0353 0 0 4 0.0354 20.00
5000 50/50 Edge -10.3500 13.1200 44 35 54 8.1040 20.00
5000 50/50 AS 2.4510 3.1870 71 61 79 2.0470 20.00
5000 50/50 ρ -0.0515 0.0908 85 77 91 0.0751 20.00
5000 50/50 ρB 0.0155 0.0881 0 0 4 0.0871 20.00

10000 None A2P 0.0257 0.0388 1 0 5 0.0293 19.65
10000 None AT -0.0123 0.0423 0 0 4 0.0406 19.65
10000 None Edge -21.6800 33.4400 63 53 72 25.5900 19.65
10000 None AS 5.2050 8.2230 75 66 82 6.3980 19.65

Table B.14: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks, including false negatives (type II error rate) over the 100 simulated
networks, using the WLS point estimator, when density is not fixed. True parameter
values for each model are shown in Table 1.
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N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None AT 0.0446 0.0674 14 9 22 0.0509 18.94
5000 None AS 0.2764 0.3781 6 3 12 0.2593 10.16
5000 70/30 AT 0.0293 0.0469 8 4 15 0.0368 19.96
5000 70/30 AS 0.2162 0.2541 6 3 12 0.1342 16.08
5000 70/30 ρ -0.0510 0.0732 10 6 17 0.0529 18.17
5000 70/30 ρB -0.0039 0.0536 3 1 8 0.0537 18.17
5000 50/50 balanced AT 0.0486 0.0723 25 18 34 0.0538 19.16
5000 50/50 balanced AS 0.2493 0.3944 7 3 14 0.3072 10.48
5000 50/50 balanced ρ -0.0310 0.0507 9 5 16 0.0404 16.96
5000 50/50 balanced ρB 0.0030 0.0554 4 2 10 0.0556 15.17
5000 50/50 AT 0.0286 0.0475 7 3 14 0.0382 19.87
5000 50/50 AS 0.2349 0.2827 10 6 17 0.1581 14.00
5000 50/50 ρ -0.0310 0.0507 9 5 16 0.0404 16.96
5000 50/50 ρB 0.0109 0.0529 7 3 14 0.0520 17.25

Table B.15: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with a zero effect to find false positives (type I error rate) over the 100
simulated networks, using the WLS point estimator with fixed density.

N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 None AT 0.3156 0.3243 91 84 95 0.0752 18.16
5000 None AS 0.9794 1.2320 22 15 31 0.7506 19.78
5000 70/30 AT 0.2198 0.2340 71 61 79 0.0809 16.71
5000 70/30 AS 0.4580 1.3980 16 10 24 1.3270 18.70
5000 70/30 ρ -0.0495 0.1273 3 1 8 0.1178 19.11
5000 70/30 ρB 0.0155 0.1041 0 0 4 0.1034 19.23
5000 50/50 balanced AT 0.3395 0.3484 90 83 94 0.0785 13.28
5000 50/50 balanced AS 0.4672 1.1050 7 4 14 1.0070 14.13
5000 50/50 balanced ρ -0.0289 0.0831 1 0 5 0.0783 18.71
5000 50/50 balanced ρB 0.0114 0.0991 1 0 5 0.0989 17.22
5000 50/50 AT 0.2521 0.2622 76 67 83 0.0723 15.94
5000 50/50 AS 0.9350 1.2650 16 10 24 0.8559 17.03
5000 50/50 ρ -0.0289 0.0831 1 0 5 0.0783 18.71
5000 50/50 ρB 0.0080 0.1076 1 0 5 0.1078 18.07

Table B.16: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with a zero effect to find false positives (type I error rate) over the 100
simulated networks, using the WLS point estimator, when density is not fixed.
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N Attributes Edge (θL) AS AT A2P Match Difference
5000 Categorical -4.0 0.2 1.0 -0.2 0.5
5000 Continuous -4.0 0.2 1.0 -0.2 0.5

Table C.17: Parameters of the simulated networks with categorical and continuous at-
tributes.

N Attributes Mean Mean Mean Mean global
components degree density clustering coefficient

5000 Categorical 1.00 9.18 0.00184 0.02609
5000 Continuous 1.00 10.13 0.00203 0.02754

Table C.18: Statistics of the simulated networks with categorical and continuous at-
tributes.

Appendix C. Continuous and categorical attributes

In the main text we addressed only binary node attributes. Here we
describe early results of applying the method to simulated networks with
continuous and categorical node attributes. For categorical attributes, we
simulated networks with a categorical attribute on each node, taking one of
three possible values. The value of the categorical attribute at each node is
assigned uniformly at random. For continuous attributes, the attribute value

vi at each node i is vi
iid∼ N(0, 1). The parameters of the simulated networks

are shown in Table C.17. For the categorical attribute, the networks are sim-
ulated with the same parameters as the networks described in the main text,
but with an additional Match parameter, for homophily on the categorical
attribute. For the continuous attribute, the networks are again simulated
with the same structural parameters, but with the additional Difference pa-
rameter, for heterophily on the continuous attribute (the network statistic
for an edge between nodes i and j is equal to |vi− vj|). The graph summary
statistics of the simulated networks are shown in Table C.18.

The estimations described here were run on the Gordon Compute Cluster
at the San Diego Supercomputer Center (SDSC), an Extreme Science and
Engineering Discovery Environment (XSEDE) facility (Towns et al., 2014).
We run each experiment on a single node with 16 parallel tasks thereby using
all cores on a node; as 20 snowball samples are estimated, some tasks must
process two samples.
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N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous A2P 0.0126 0.0156 0 0 4 0.0091 19.60
5000 Continuous AT -0.0146 0.0185 0 0 4 0.0113 19.60
5000 Continuous Difference -0.0229 0.0270 0 0 4 0.0145 19.60
5000 Continuous AS 0.1289 0.1695 36 27 46 0.1106 19.60
5000 Categorical A2P 0.0112 0.0151 0 0 4 0.0102 19.03
5000 Categorical AT -0.0140 0.0201 0 0 4 0.0144 19.03
5000 Categorical AS 0.1380 0.1823 49 39 59 0.1196 19.03
5000 Categorical Match -0.0010 0.0226 0 0 4 0.0227 19.03

Table C.19: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, including false negatives
(type II error rate) over the 100 simulated networks, using the WLS point estimator with
fixed density. True parameter values for each model are shown in Table C.17.

N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous A2P 0.0075 0.0126 0 0 4 0.0101 19.60
5000 Continuous AT -0.0149 0.0197 0 0 4 0.0129 19.60
5000 Continuous Difference -0.0211 0.0259 0 0 4 0.0152 19.60
5000 Continuous AS 0.1519 0.2019 46 37 56 0.1337 19.60
5000 Categorical A2P 0.0041 0.0134 0 0 4 0.0128 19.03
5000 Categorical AT -0.0157 0.0220 0 0 4 0.0155 19.03
5000 Categorical AS 0.1807 0.2374 64 54 73 0.1548 19.03
5000 Categorical Match -0.0024 0.0258 0 0 4 0.0259 19.03

Table C.20: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, including false negatives
(type II error rate) over the 100 simulated networks, using the median point estimator
with fixed density. True parameter values for each model are shown in Table C.17.
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N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous A2P 0.0289 0.0329 0 0 4 0.0158 19.97
5000 Continuous AT 0.0045 0.0278 0 0 4 0.0276 19.97
5000 Continuous Difference -0.0143 0.0416 0 0 4 0.0392 19.97
5000 Continuous Edge -8.7130 14.4500 69 59 77 11.5900 19.97
5000 Continuous AS 2.0060 3.5690 82 73 88 2.9670 19.97
5000 Categorical A2P 0.0385 0.0461 0 0 4 0.0255 19.96
5000 Categorical AT 0.0003 0.0347 0 0 4 0.0349 19.96
5000 Categorical Edge -7.8220 11.4500 65 55 74 8.4010 19.96
5000 Categorical AS 1.7560 2.7610 81 72 87 2.1410 19.96
5000 Categorical Match -0.0000 0.0423 0 0 4 0.0425 19.96

Table C.21: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, including false negatives
(type II error rate) over the 100 simulated networks, using the WLS point estimator, when
density is not fixed. True parameter values for each model are shown in Table C.17.

Table C.19 and Table C.20 show the results using the WLS and median
point estimators, respectively, when density is fixed in estimation. The type
II error rate is extremely good on all parameters except the problematic
alternating k-star parameter.

Table C.21 and Table C.22 show the results for the WLS and median point
estimators, respectively, when density is not fixed in estimation. Again, the
type II error rate is excellent on all parameters except alternating k-star and
Edge.

Just as for the structural parameters and binary attributes described
in the main text, in order to estimate the type I error rate we simulated
networks with the parameter for each effect in turn set to zero. Table C.23
and Table C.24 show the results for the WLS and median point estimators,
respectively, when density is fixed in estimation. The type I error rate on
parameters other than alternating k-star is good.

Table C.25 and Table C.26 show the results for the WLS and median
point estimators, respectively, when density is not fixed in estimation. In
addition to the problematic alternating k-star parameter (for the WLS point
estimator), the type I error rate for the alternating k-triangle parameter is
also very high.

In summary, the method has very good power and low type I error rate
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N Attributes Effect Bias RMSE Type II error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous A2P 0.0196 0.0290 0 0 4 0.0215 19.97
5000 Continuous AT 0.0078 0.0376 0 0 4 0.0369 19.97
5000 Continuous Difference -0.0039 0.0448 0 0 4 0.0449 19.97
5000 Continuous Edge 9.6560 17.4600 99 95 100 14.6200 19.97
5000 Continuous AS -2.5890 4.4840 100 96 100 3.6800 19.97
5000 Categorical A2P 0.0270 0.0403 2 1 7 0.0301 19.96
5000 Categorical AT 0.0022 0.0441 0 0 4 0.0443 19.96
5000 Categorical Edge 9.7830 15.9500 100 96 100 12.6600 19.96
5000 Categorical AS -2.6050 4.1610 100 96 100 3.2620 19.96
5000 Categorical Match -0.0010 0.0521 0 0 4 0.0524 19.96

Table C.22: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, including false negatives
(type II error rate) over the 100 simulated networks, using the median point estimator,
when density is not fixed. True parameter values for each model are shown in Table C.17.

N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous AT 0.0213 0.0419 5 2 11 0.0362 19.97
5000 Continuous Difference -0.0040 0.0187 8 4 15 0.0184 19.23
5000 Continuous AS 0.2372 0.2597 12 7 20 0.1063 18.11
5000 Categorical AT 0.0309 0.0524 7 3 14 0.0425 19.75
5000 Categorical AS 0.2863 0.3388 13 8 21 0.1820 16.71
5000 Categorical Match -0.0010 0.0236 3 1 8 0.0237 18.79

Table C.23: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, with a zero effect to find
false positives (type I error rate) over the 100 simulated networks, using the WLS point
estimator with fixed density.
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N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous AT -0.0150 0.0490 2 1 7 0.0468 19.97
5000 Continuous Difference -0.0026 0.0201 4 2 10 0.0200 19.23
5000 Continuous AS 0.2654 0.3007 11 6 19 0.1420 18.11
5000 Categorical AT -0.0180 0.0631 7 3 14 0.0607 19.75
5000 Categorical AS 0.2787 0.3627 11 6 19 0.2332 16.71
5000 Categorical Match -0.0022 0.0283 4 2 10 0.0284 18.79

Table C.24: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, with a zero effect to find
false positives (type I error rate) over the 100 simulated networks, using the median point
estimator with fixed density.

N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous AT 0.2184 0.2312 72 63 80 0.0763 17.31
5000 Continuous Difference -0.0067 0.0338 2 1 7 0.0333 19.95
5000 Continuous AS 1.2280 1.7700 26 18 35 1.2800 19.95
5000 Categorical AT 0.2767 0.2853 86 78 91 0.0700 15.65
5000 Categorical AS 1.1010 1.5340 20 13 29 1.0730 19.68
5000 Categorical Match 0.0066 0.0485 2 1 7 0.0483 19.97

Table C.25: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, with a zero effect to find
false positives (type I error rate) over the 100 simulated networks, using the WLS point
estimator, when density is not fixed.

N Attributes Effect Bias RMSE Type I error rate (%) Std. dev. Mean
Estim. 95% C.I. estimate samples

lower upper converged
5000 Continuous AT -0.2874 0.6739 17 11 26 0.6126 17.31
5000 Continuous Difference -0.0048 0.0394 1 0 5 0.0393 19.95
5000 Continuous AS -1.3880 2.2940 0 0 4 1.8350 19.95
5000 Categorical AT -0.5430 0.8852 23 16 32 0.7027 15.65
5000 Categorical AS -1.0360 1.9850 1 0 5 1.7020 19.68
5000 Categorical Match -0.0074 0.0657 0 0 4 0.0656 19.97

Table C.26: Error statistics and number of converged snowball samples (out of 20) for the
simulated networks with continuous and categorical attributes, with a zero effect to find
false positives (type I error rate) over the 100 simulated networks, using the median point
estimator, when density is not fixed.
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for homophily (or heterophily for the continuous attribute) on attribute pa-
rameters in our simulated networks. However when density is not fixed the
type I error rate for the alternating k-triangle parameter is very high, as
noted in Section 6 of the main text.
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