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1 Introduction

In this Supplemental Material, we show the derivation of the master equation described by
Castellano et al. (2000), given by

dPm(t)

dt
=

F−1∑
k=1

k

F
Pk(t)

[
δm,k+1 − δm,k + (g − 1)

F∑
n=0

(
Pn(t)W (k)

n,m(t)− Pm(t)W (k)
m,n(t)

)]
, (1)

and its simplification

dPm(t)

dt
=

[
m− 1

F
Pm−1(t)−

m

F
Pm(t)

]
+ (g − 1)

[
Pm−1(t)W

(k)
m−1,m(t)− Pm(t)W

(k)
m,m−1(t)

+ Pm+1(t)W
(k)
m+1,m(t)− Pm(t)W

(k)
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k

F
Pk(t), (2)
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where the zeroth differential equation is

dP0(t)

dt
= −

F∑
m=1

dPm(t)

dt
. (3)

2 Derivation of differential equations

If k = F or k = 0, then by the dynamics of the Axelrod model no change can occur,
hence why the first summation in the master equation excludes these two scenarios. To
further understand the set of non-linear differential equations, we first consider just the left
hand-side, which we see simplifies to

F−1∑
k=1

k

F
Pk(t) [δm,k+1 − δm,k] =

m− 1

F
Pm−1(t)−

m

F
Pm(t).

The term Pk(t) is the probability of selecting a bond of type k, while the probability of
selecting one of these k features is k/F , so the probability of two events both happening is
the product kPk(t)/F . In light of this, if k = m−1, then a new of bond of type m is created,
due to a new common feature across the bond arising. Conversely, if k = m, then a bond of
type m is removed, due to a new common feature across the bond arising.

We now see in the master equation a balance between creation and removal of bonds.
But when such a transition occurs, either creation or removal, then it is possible to create or
destroy common features across the bonds for all the other sites, by our assumptions, in the
von Neumann neighborhood of the transitioned (or culturally influenced) site in the randomly
chosen bond. This can occur to g(R)− 1 different sites, since the lattice is infinite, and we
have again a balance between creation and removal of common features across bonds. For
each bond of the g(R)− 1 sites, change can occur regardless of how many common features
they share, which is reflected by the second summation in the master equation.

For each transition that occurs for the initially chosen bond, a bond (connected to the
other neighborhood sites) with n common features may be influenced by the transition of
original bond with k common features so the newly influenced bond now has m common
features, where we recall that the probability of such a transition is denoted by W

(k)
n,m(t). But

under such a transition, the number of common features can only increase by one, decrease by
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one, or remain the same, so we see that the right-hand side of the master equation becomes

(g − 1)
F∑

n=1

(
Pn(t)W (k)

n,m − Pm(t)W (k)
m,n(t)

)
=(g − 1)

(
Pm−1(t)W

(k)
m−1,m(t)− Pm(t)W

(k)
m,m−1(t)

+ Pm+1(t)W
(k)
m+1,m(t)− Pm(t)W

(k)
m,m+1(t)

)
,

where the W
(k)
m,m(t) terms canceled each other out, while all the other values of W

(k)
n,m(t) equal

zero; also see Van Kampen (1992, Chapter VI). This results in

dPm(t)

dt
=

[
m− 1

F
Pm−1(t)−

m

F
Pm(t)

]
+ (g − 1)

F−1∑
k=1

k

F
Pk(t)

[
Pm−1(t)W

(k)
m−1,m(t)− Pm(t)W

(k)
m,m−1(t)

+ Pm+1(t)W
(k)
m+1,m(t)− Pm(t)W

(k)
m,m+1(t)

]
. (4)

We now need to derive the transition probabilities W
(k)
n,m(t), which we will see are inde-

pendent of k in the mean-field analysis.

3 Derivation of W
(k)
n,m(t)

We consider three sites, which we simply refer to as the first, second and third sites. The
first and second sites are connected by the first bond with k common features, while the
second and third sites are connected by the second bond with n common features. We will
consider the different types of bonds in terms of their common features. By the dynamics
of the model, we know features will not change if the number of common features on the
first bond is k = 0 or k = F , so these two cases are excluded. We assume the first bond
has k common features, where 0 < k < F , while the second bond has n common features.
For concreteness, we can assume without loss of generality that the culture vector of the
first site is a zero vector (0, 0, . . . , 0) with length F , while the second site’s culture vector
is (0, . . . , σk+1, . . . , σF ), where σi 6= 0 for i > k, which ensures that the first and the second
sites have only k common features. Similarly, the third site has another cultural vector
(σ′1, σ

′
2, . . . , σ

′
F ), which we can describe with an index set In ⊂ {1, . . . , F}, so there are n

elements such that σ′i = σi for i ∈ In . In other words, there are n entries of the third culture
vector that coincide with the entries of the second culture vector, resulting in n common
features across the second bond.
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We now assume another common feature is created across the first bond, so we set
σk+1 = 0, which may create or remove a common feature across the second bond or have no
effect at all. If n = F , then σ′i = 0 for i = 1, . . . , k and σ′i = σi for i > k, so a common trait
across the second bond, corresponding to σk+1 and σ′k+1, must be removed, implying

W
(k)
F,F−1(t) = 1.

For n = 0, two possibilities exist: a new common feature is created if σ′k+1 = 0, which we
will assume occurs with probability ρ(t) = P(σ′k+1 = 0), or no new feature is created, which
occurs with probability 1− ρ(t).

If 0 < n < F , the new feature change will remove a common feature across the second
bond if its corresponds to one of the n common features across the third bond. The proba-
bility of this event can be reasoned by first noting that there are in total

(
n
F

)
different ways

to have the n common features on the second bond. But only one of those common features
will be the (k+1) th one, meaning the other n−1 common features can be arranged in

(
n−1
F−1

)
different ways. The ratio of these two numbers and the previous transition probabilities give
the general expression

W
(k)
n,n−1(t) =

(
F−1
n−1

)(
F
n

) =
n

F
, 0 ≤ n ≤ F.

Given that the above event does not happen, the number of common features across the
second bond remains or increases by one, so then the probability of n becoming n+ 1 is the
probability of σ′k+1 = 0, which we assume is also given by ρ(t) = P(σ′k+1 = 0), since σk+1 = 0,
and σ′k+1 6= 0, then n remains n, which leads to the remaining transition probabilities

W (k)
n,n(t) =

[
1−W (k)

n,n−1(t)
]

[1− ρ(t)], W
(k)
n,n+1 =

[
1−W (k)

n,n−1(t)
]
ρ(t), 0 ≤ n ≤ F.

Choice of ρ(t) For ρ(t), the original choice was

ρ(t) =
1

F

F∑
k=1

kPk(t),

which is the average fraction of common features across a randomly chosen bond. However, ρ
may be set to a constant value, giving qualitatively the same results (Castellano et al., 2000).
We note that the choice of ρ means that there is no dependence on k in the expressions for
the transition probabilities, which simplifies the summation in the master equation.
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3.1 Small g analysis

When the coordination number g = 1, the nonlinear component of the differential equa-
tions (2) disappears giving a tractable coupled set of linear differential equations

dPm(t)

dt
=
m− 1

F
Pm−1(t)−

m

F
Pm(t), 1 ≤ m ≤ F, (5)

which can be solved using standard techniques such as Laplace transforms. For F ≥ 3, the
first three solutions are

P1(t) = P1(0)e−t/F (6)

P2(t) = P1(0)[e−t/F − e−2t/F ] + P2(0)e−2t/F (7)

P3(t) = P1(0)[e−t/F + 2e−2t/F − e−3t/F ] + 2P2(0)[e−2t/F − e−3t/F ] + P3(0)e−3t/F . (8)

Now there are naturally no changes induced from other feature updates, and then, for all
m ≥ 1 the probability Pm will rapidly converge to zero, or in other words, P0 will rapidly
converge to one. To ensure non-zero convergence of Pm, the nonlinear term

(g − 1)
F−1∑
k=1

k

F
Pk(t)

[
Pm−1(t)W

(k)
m−1,m(t)− Pm(t)W

(k)
m,m−1(t)

+ Pm+1(t)W
(k)
m+1,m(t)− Pm(t)W

(k)
m,m+1(t)

]
, (9)

must be sufficiently large and positive, which can be achieved by suitably varying the pa-
rameters g, F , or q, the last model parameter appearing only in the initial values Pm(0) of
the differential equations.

4 Numerical solution

The numerical solution of the master equation was carried out using MATLAB R©. The
MATLAB R© code is available from https://sites.google.com/site/alexdstivala/home/

axelrod_qrphase/.
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