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Computational details
Pseudocode for the EE algorithm (including technical details of the adaptive method we use to guarantee that the approximate
equality (Equation S1) holds), and contrastive divergence (CD) used for initial estimates is detailed as Algorithm S1 and
Algorithm S2, respectively. Both these algorithms use an ERGM sampler described in Algorithm S3, however other ERGM
samplers may be used, and in particular the IFD sampler1 was used for the results in the main text.

The step size multipliers K1A in Algorithm S2 may be obtained from the derivative ∂∆zA(xobs,θθθ)/∂θA. These derivatives
may be approximated by finite differences or as detailed in Algorithm S2. In the estimation results reported in this paper,
the number of steps M1 was of the order of 10N/m where N is the number of network nodes and we have used m = 1000
throughout. This number of steps was smaller than that required for the S algorithm to converge, but it was enough to obtain a
good starting point for the EE algorithm.

For the EE algorithm, the number of steps M should be large enough for θA(t) to converge. In the estimation results reported
in this paper M was of the order of 1000N/m. A possible choice of KA constants was suggested in the main text. For the
estimation results reported we used a better choice of KA values. We observed that larger KA values result in larger fluctuations
of θA(t) and faster convergence. Fluctuations may be measured by sd(θA(t))/|θA(t)|. We also observe that convergence of the
algorithm is faster if fluctuations of different parameters have close values, that is, if sd(θA(t))/|θA(t)| ≈ c2 for all A. We thus
adapted the values of KA so that, for all A,

sd(θA(t))≈ c2 ·max{|θA(t)|,c1} (S1)

where we introduce a small positive constant c1 to avoid singularities. The following constants were used: c1 = 0.01, c2 = 10−4.
Larger values of c2 are also possible. To estimate model parameters on the Livemocha network data (Fig. 3 of the main article)
we first performed 2.5×106 steps with larger KA values so that c2 = 10−3, and later steps were performed with smaller KA
values so that c2 = 10−4. This approach allows (i) to speed up convergence, and (ii) to check that the estimation results do not
depend on the algorithm constants.

In the algorithm descriptions, vectors such as θθθ , zzz, and dddzzz have dimension equal to the number of model parameters, s.
All vector operations are element-wise, e.g. dddzzz2 is the vector consisting of the square of each element of dddzzz and DDD ·dddzzz is the
element-wise product of DDD and dddzzz (a vector of the same dimension, s, as both DDD and dddzzz). The values of the algorithm constants
are specified in the algorithm description, with recommend ranges noted in the corresponding comments.
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Algorithm S1 EE: Estimate ERGM parameters for an observed network using Equilibrium Expectation.

Precondition: xobs is the observed graph, θθθ 000 is the initial parameter estimate, DDD000 is the initial derivative estimate.
Postcondition: Returned value θθθ ttt is the estimated parameter value.

1: function EE(xobs,θθθ 000,DDD000)
2: KA ← 10−4 . Multiplier of DDD to get step size multiplier
3: c1 ← 10−2 . Minimum magnitude of |θ̄θθ | (small positive constant)
4: c2 ← 10−4 . Multiplier of |θ̄θθ |/sd(θθθ) to limit θθθ variance (from 10−5 to 0.1)
5: p1 ← 2 . Power to raise dddzzz to for step size (square)
6: p2 ← 1/2 . Power to raise c2 · |θ̄θθ |/sd(θθθ) to for adapting step size (sqrt)
7: Mouter ← 1000 . Steps of Algorithm EE (from 102 to 104)
8: Minner ← 100 . Inner iterations of Algorithm EE (from 50 to 104)
9: m← 1000 . Number of sampler iterations

10: t ← 0
11: x← xobs
12: DDD← DDD000
13: dddzzz← 000 . Vector of accumulated change statistics
14: for i← 1 to Mouter do
15: for j← 1 to Minner do
16: (dddzzzAAAdddddd,dddzzzDDDeeelll)← SAMPLER(x,θθθ ttt ,m,True) . Perform moves: x is updated by accepted proposals
17: dddzzz← dddzzz+dddzzzAAAdddddd−dddzzzDDDeeelll . Accumulate accepted change statistics
18: θθθ ttt+++111 ← θθθ ttt − sign(dddzzz) ·KA ·DDD ·dddzzzp1

19: t ← t +1
20: end for

21: DDD← DDD ·

[
c2 ·

max
(
|θθθ ttt−−−MMMinner≤≤≤kkk<<<ttt |,c1

)
sd
(

θθθ ttt−−−MMMinner≤≤≤kkk<<<ttt

)
]p2

. uses mean and sd of θθθ values in inner loop

22: end for
23: return θθθ ttt
24: end function

Algorithm S2 Contrastive Divergence for ERGM initial parameter and derivative estimation.

Precondition: xobs is the observed graph.
Postcondition: Return values θθθ ttt is CD-1 initial parameter estimate and DDD is initial derivative estimate to use in EE Algorithm.

1: function CD(xobs)
2: K1A ← 0.1 . Multiplier of dddaaa to get step size multiplier
3: M1← 50 . Steps of Algorithm S
4: m← 1000 . Number of sampler iterations
5: x← xobs
6: θθθ 000 ← 000
7: DDD← 000
8: for t← 0 to M1-1 do
9: (dddzzzAAAdddddd,dddzzzDDDeeelll)← SAMPLER(x,θθθ ttt ,m,False) . Do not perform moves: x is unchanged

10: dddzzz← dddzzzAAAdddddd−dddzzzDDDeeelll
11: dddzzzsssuuummm← dddzzzAAAdddddd +dddzzzDDDeeelll
12: DDD← DDD+dddzzz2 . Approximate expectation of square of change statistics
13: dddaaa← K1A/dddzzzsssuuummm2

14: θθθ ttt+++111 ← θθθ ttt − sign(dddzzz) ·dddaaa ·dddzzz2

15: end for
16: DDD← m/DDD
17: return (θθθ ttt ,DDD)
18: end function
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Algorithm S3 Sampler: Sample from ERGM distributions with Metropolis-Hastings using the “basic” sampler, where the
proposal is to toggle the edge between two distinct nodes chosen uniformly at random.

Precondition: x is a simple graph, θθθ is vector of parameters, m is number of sampler iterations.
Postcondition: Return value (dddzzzAAAdddddd,dddzzzDDDeeelll) accumulated change statistics of accepted (add, delete) moves. The graph x is

updated by the accepted moves only if doMove is True.
1: function SAMPLER(x,θθθ ,m,doMove)
2: dddzzzAAAdddddd ← 0
3: dddzzzDDDeeelll ← 0
4: for s← 1 to m do
5: Choose two nodes i, j(i 6= j) uniformly at random
6: Compute change statistic dzA for add (if xi j = 0) or delete (if xi j = 1) for each statistic A
7: α ← min{1,exp(∑A θA ·dzA)} . ERGM proposal acceptance probability
8: if Unif(0,1)< α then . Accept change with probability α

9: if xi j = 1 then
10: dddzzzDDDeeelll ← dddzzzDDDeeelll−dddzzz
11: else
12: dddzzzAAAdddddd ← dddzzzAAAdddddd +dddzzz
13: end if
14: if doMove then
15: if xi j = 1 then
16: xi j ← 0
17: else
18: xi j ← 1
19: end if
20: end if
21: end if
22: end for
23: return (dddzzzAAAdddddd,dddzzzDDDeeelll)
24: end function
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Proof of equation (12)
Claim. For any x and A,

∂∆zA (x,θθθ)
∂θA

≥ 0.

Recall, from equation (5) in the paper, that:

∆zA (x,θθθ) = ∑
x′

P
(
x→ x′,θθθ

)
[zA
(
x′
)
− zA (x)] (S2)

Proof. Inserting equation (3) [acceptance probability] from the main text into the expression for the transition probability
P(x→ x′,θθθ) = q(x→ x′)α(x→ x′,θθθ) we have:

P(x→ x′,θθθ) =


q(x→ x′) if

q(x′→ x)π(x′,θθθ)
q(x→ x′)π(x,θθθ)

> 1

q(x′→ x)exp

(
∑
A

θA
[
zA(x′)− zA(x)

])
otherwise

∂P(x→ x′,θθθ)
∂θA

[
zA(x′)− zA(x)

]
=


0 if

q(x′→ x)π(x′,θθθ)
q(x→ x′)π(x,θθθ)

> 1

q(x′→ x)
[
zA(x′)− zA(x)

]2 exp

(
∑
A

θA
[
zA(x′)− zA(x)

])
otherwise

From (5) in the main text:

∂∆zA (x,θθθ)
∂θA

= ∑
x′

∂P(x→ x′,θθθ)
∂θA

[
zA(x′)− zA(x)

]

∀x′, ∂P(x→ x′,θθθ)
∂θA

[
zA(x′)− zA(x)

]
≥ 0 =⇒ ∂∆zA (x,θθθ)

∂θA
≥ 0
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Network statistics typical for social networks
Different types of statistics zA(x) may be needed to represent different networks. However, a small set of common structural
features are present in a large variety of empirical networks (Snijders et al.2). In the models for undirected networks specified
and estimated in the main article, we incorporate some of these statistics that we describe below.

Edge (L)
One of the statistics used for ERGMs is simply the count of the ties (edges) contained in the network x. Denote it by

zL(x) = ∑
i, j

xi j

where xi j = 1 if there is a tie between nodes i and j and xi j = 0 otherwise.

Isolates
Isolates is simply the count of nodes with no incident edges.

Activity (ρ)
Different nodes may have different attributes. Social network researchers are often interested in how these attributes influence
the tendency of actors to form ties. In the main article “activity” and “interaction” statistics are used for a network with binary
attributes ai = {0,1}. Activity measures the increased propensity for a node with attribute ai = 1 to form a tie, regardless of the
attribute of the other node. It is defined as

zρ(x) = ∑
i, j

aixi j

Interaction (ρB)
Interaction measures the increased propensity for a node i with ai = 1 to form a tie to another node j also with a j = 1. It is
defined as:

zρB(x) = ∑
i, j

xi jaia j

Matching
Nodes may also be associate with categorical attribute ci. The “matching” statistic measures the increased propensity for two
nodes to form a tie between them if they have the same value of the categorical attribute. It is defined as

zMatch(x) = ∑
i, j

xi jδci,c j

where δ is the Kronecker delta function.

Star, two-path and triangle statistics
Other basic statistics are the 2-star count, 3-star count,..., k-star count and triangle count. A k-star is a configuration in which one
node is connected to k other nodes (Fig. S1), while a triangle is a complete subgraph of 3 nodes i, j,k so that xi j = xik = xk j = 1.
Robins et al.3 and Snijders et al.2 suggested a more general specification. The following configurations were introduced: a
k-2-path is a subnetwork comprising 2 nodes, i and j, and a set of exactly k different nodes, sharing ties with both node i and
node j: a k-triangle may be defined as such a k-2-path in which nodes i and j are connected by a tie xi j = 1 (Fig. S1). Snijders
et al.2 also introduced a statistic to model all k-stars with a single parameter. Denote the number of k-stars in the network by
Sk(x), the number of k-2-paths by Uk(x) and the number of k-triangles by Tk(x). Then the following statistics are defined.

Alternating stars (AS)

zAS(x) =
N−1

∑
k=2

(−1)k Sk(x)
λ k−2

Alternating two-paths (A2P)

zA2P(x) =U1(x)−
2U2(x)

λ
+

N−2

∑
k=3

(
−1
λ

)k−1

Uk(x)
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Alternating triangles (AT)

zAT (x) = 3T1(x)+
N−3

∑
k=1

(−1)k Tk+1(x)
λ k

In the above, λ > 1 is the geometric weighting parameter, with higher values implying increased chances of higher degree
nodes (for alternating k-star). We used λ = 2 throughout.

k-star k-2-paths k-triangles

Figure S1. Sub-network configurations: k-stars, k-two-paths and k-triangles.
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Network Number of samples Number of waves Number of seeds
A. thaliana PPI 20 3 20
Yeast PPI 20 3 5
Human PPI 20 3 5
C. elegans PPI 20 3 5
Drosophila optic medulla 20 3 2

Table S1. Snowball sampling parameters for the biological networks.

Biological networks

Molecular interactions in living organisms are often viewed as networks4. Some are inherently undirected, such as protein-
protein interaction (PPI) networks, in which the nodes represent proteins and an edge represents observed binding between two
proteins in a particular biological context5. Others may be directed, such as gene regulatory networks, where nodes represent
operons (contiguous genes which are transcribed as a unit) and edges represent transcriptional interactions between them. That
is, a directed edge from operon x to operon y means that x encodes a transcription factor which regulates the expression of y.6

We use the new EE method, as well as stochastic approximation via the method of moments with both the IFD1 and typical
(“basic”) MCMC samplers7, 8, and snowball sampling with conditional estimation9, 10 to estimate ERGM parameters for six
biological networks (four PPI networks, a regulatory network, and a neural network).

The four PPI networks are: an Arabidopsis thaliana PPI network11, 12, a yeast PPI network13 from the Nexus network
repository14, a human PPI network15, and a Caenorhabditis elegans PPI network16. Self-loops and multiple edges, where
present, were removed.

The A. thaliana network has the proteins annotated with various properties as described in the Supporting Online Material
of Arabidopsis Interactome Mapping Consortium11. In particular we make use of the following protein binary attributes:

Plant-specific Genes defined as plant-specific, absent from other eukaryotic lineages (Supporting Online Material of Ara-
bidopsis Interactome Mapping Consortium11).

Kinase Kinase enzymatic activities predicted17.

Phosphorylated Proteins experimentally shown to be phosphorylated18.

And the following categorical attributes:

Ubiquitin E by domain Ubiquitin activating E1 enzyme, ubiquitin conjugating E2 enzyme, or ubiquitin ligase E3 enzyme.
Domain assignments based on sequence alignments (Supporting Online Material of Arabidopsis Interactome Mapping
Consortium11). An NA value (which does not match any class) is assigned to other proteins.

Kinase/Phosphorylated Constructed from the Kinase and Phosphorylated binary attributes. Every protein with the Kinase
binary attribute is assigned to the Kinase class, and proteins with the Phosphorylated attribute (which do not also have
the Kinase attribute) are assigned to the Phosphorylated class, and other proteins are assigned NA.

The E. coli regulatory network6, 19 was obtained via the statnet package20, 21. As in Saul & Filkov22 and Hummel et al. 23,
we treat this network as undirected.

As an example of a neural network, a Drosophila optic medulla synaptic network24, found via the ICON25 database, was
obtained from Open Connectome (http://openconnecto.me/graph-services/download/)26. The nodes in
this network represent neurons, with the edges representing synaptic interactions. Here we treat this network as undirected.

Simple structural models, consisting only of the Edge (L), Alternating k-star (AS), Alternating k-triangle (AT), and Isolates
parameters were estimated by four methods: the new EE algorithm (with the IFD sampler in the MCMC step), stochastic
approximation (SA) via the method of moments (using both the basic and IFD samplers), and snowball sampling with
conditional estimation. The latter method first requires that snowball samples are obtained from the network, which are then
estimated independently (in parallel) by conditional estimation, and then a point estimate and bootstrap standard errors are
estimated as described in Stivala et al. 10.

For all methods, 20 estimations are made in parallel (20 snowball samples for snowball sampling, 20 estimations of the full
network for the other methods). The snowball sampling parameters used are shown in Table S1.

Table S2 shows the average estimation time and elapsed (“wall clock”) time for each network using each method. It is clear
that the EE algorithm is able to estimate network parameters much faster than the other methods, taking at most 11 minutes
elapsed time, even for networks that take many hours with other methods.
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Average Avg. estim.
Method Network sample size Nc time (m) Elapsed time
EE (IFD sampler) A. thaliana PPI 2160 20 1.1 01 m 50 s
EE (IFD sampler) Yeast PPI 2617 20 6.6 09 m 07 s
EE (IFD sampler) Human PPI 4303 20 7.6 10 m 49 s
EE (IFD sampler) C. elegans PPI 5038 20 6.8 09 m 35 s
EE (IFD sampler) E. coli regulatory 418 20 0.6 00 m 43 s
EE (IFD sampler) Drosophila optic medulla 1781 20 4.3 06 m 22 s
SA (IFD sampler) A. thaliana PPI 2160 20 9.2 0 h 34 m 02 s
SA (IFD sampler) Human PPI 4303 20 49.2 2 h 46 m 54 s
SA (IFD sampler) Yeast PPI 2617 20 45.6 2 h 02 m 38 s
SA (IFD sampler) C. elegans PPI 5038 20 766.5 25 h 07 m 44 s
SA (IFD sampler) E. coli regulatory 418 20 0.0 0 h 00 m 06 s
SA (IFD sampler) Drosophila optic medulla 1781 20 824.6 72 h 40 m 00 s
SA (basic sampler) A. thaliana PPI 2160 0 — (time limit)
SA (basic sampler) Yeast PPI 2617 0 — (time limit)
SA (basic sampler) Human PPI 4303 0 — (time limit)
SA (basic sampler) C. elegans PPI 5038 3 204.5 7 h 40 m 20 s
SA (basic sampler) E. coli regulatory 418 20 1.1 0 h 04 m 06 s
SA (basic sampler) Drosophila optic medulla 1781 0 — (time limit)
Snowball sampling A. thaliana PPI 490.6 19 26.3 2 h 08 m 24 s
Snowball sampling Yeast PPI 264.8 19 30.2 3 h 40 m 34 s
Snowball sampling Human PPI 822.5 18 47.0 3 h 50 m 27 s
Snowball sampling C. elegans PPI 496.4 16 270.7 40 h 00 m 33 s
Snowball sampling Drosophila optic medulla 649.7 15 118.0 7 h 22 m 48 s

Table S2. Average single sample (or full network when snowball sampling not used) estimation time and total elapsed time,
using 20 Intel Haswell compute cores (2.3 GHz) on a Lenovo NeXtScale x86 cluster system. The maximum elapsed time limit
was set to 99 hours. Average estimation times are over 20 snowball samples (one per core) when snowball sampling is used, or
20 parallel runs (one per core) of the whole network when snowball sampling is not used. Nc is the number of estimations
which converged. The E. coli regulatory network was not estimated with snowball sampling as it is too small.
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The estimated model parameters for all six networks, estimated with all four methods, are shown in Table S3. Although it is
many times faster, the EE algorithm obtains estimates that are consistent with, actually almost exactly equal to, those from the
MCMCMLE methods. Snowball sampling, while usually able to detect significant effects, is an approximate method and not
an MLE, and occasionally does not find significant effects that the MLE methods do. For example the alternating k-triangle
parameter on the A. thaliana PPI network is not found to be significant when using snowball sampling, while it is by the full
network MLE methods.

These results show a significant positive alternating k-triangle (AT) parameter for all the networks, indicating that the
triangle motif is significantly over-represented.
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Network Effect Estimate (95% C.I.)
EE (IFD sampler) SA (IFD sampler) SA (basic sampler) Snowball

A. thaliana PPI AS 2.33 2.32 — 2.88
(2.24,2.42) (2.23,2.42) (1.72,3.10)

AT 1.28 1.27 — 0.00
(1.24,1.31) (1.23,1.32) (−0.01,0.01)

Edge −14.99 −14.97 — −14.76
(−15.01,−14.96) (−16.26,−13.36)

Isolates −7.14 −7.12 — −10.49
(−7.58,−6.69) (−7.58,−6.66) (−11.21,−7.95)

Yeast PPI AS −0.05 −0.05 — 0.56
(−0.10,0.01) (−0.10,0.01) (−0.48,1.29)

AT 1.86 1.86 — 0.85
(1.81,1.91) (1.82,1.90) (0.18,1.07)

Edge −7.76 −7.76 — −6.57
(−7.81,−7.71) (−13.42,−4.88)

Human PPI AS 1.32 1.32 — 1.29
(1.29,1.35) (1.29,1.35) (0.67,2.04)

AT 1.37 1.37 — 0.03
(1.35,1.38) (1.34,1.39) (0.02,0.07)

Edge −11.77 −11.77 — −9.04
(−11.82,−11.73) (−13.21,−7.21)

C. elegans PPI AS 1.04 1.04 1.14 1.06
(1.01,1.07) (1.01,1.07) (1.03,1.25) (0.83,2.16)

AT 1.59 1.59 1.52 0.35
(1.58,1.61) (1.57,1.61) (1.47,1.57) (0.19,0.41)

Edge −11.03 −10.99 −11.41 −8.82
(−11.08,−10.98) (−11.78,−11.04) (−13.40,−7.24)

E. coli regulatory AS 0.45 0.44 0.44 —
(0.32,0.59) (0.31,0.57) (0.19,0.69)

AT 0.78 0.79 0.79 —
(0.64,0.93) (0.66,0.92) (0.61,0.96)

Edge −6.55 −6.53 −6.53 —
(−6.63,−6.47) (−7.24,−5.82)

Drosophila medulla AS 0.23 0.24 — 1.17
(0.17,0.30) (0.18,0.30) (−0.64,1.58)

AT 1.62 1.61 — 1.09
(1.56,1.67) (1.57,1.65) (0.86,1.29)

Edge −8.14 −8.16 — −7.70
(−8.19,−8.09) (−12.51,−5.12)

Table S3. Parameter estimates for the biological networks. Standard errors for methods other than snowball sampling were
computed from the inverse covariance matrix of the simulated network statistics7.
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