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ABSTRACT

Bipartite graphs, representing two-mode networks, arise in many research fields. These networks have

two disjoint node sets representing distinct entity types, for example persons and groups, with edges

representing associations between the two entity types. In bipartite graphs, the smallest possible cycle is

a cycle of length four, and hence four-cycles are the smallest structure to model closure in such networks.

Exponential-family random graph models (ERGMs) are a widely used model for social, and other, networks,

including specifically bipartite networks. Existing ERGM terms to model four-cycles in bipartite networks,

however, are relatively rarely used. In this work we demonstrate some problems with these existing terms

to model four-cycles, and define new ERGM terms to help overcome these problems. The position of the

new terms in the ERGM dependence hierarchy, and their interpretation, is discussed. The new terms are

demonstrated in simulation experiments, and their application illustrated on a canonical example of an

empirical two-mode network.

KEYWORDS: bipartite graph; two-mode network; exponential-family random graph model; ERGM;

four-cycle.

1. INTRODUCTION
Bipartite graphs are graphs whose nodes can be partitioned into two disjoint sets, such that an

edge exists only between nodes in different sets. Such graphs have important applications in

representing two-mode networks, which are networks in which there are two types of nodes,

with edges possible only between nodes of different types. An important example of a two-mode

network is an affiliation network, in which one type of node represents a person, the other type

of node represents a group, and an edge represents membership of a person in a group [1]. Two-

mode networks have applications not only in sociology, but also biology, ecology, political science,

psychology, finance, and economics; for a recent review of applications and methods for two-mode

networks, see Neal et al. [2]. Bipartite networks also arise as representing the meso-level network

in the conceptualization and analysis of multilevel networks [3].

Two-mode networks can be studied by means of their projections onto one-mode (unipartite)

networks, thereby allowing the use of existing methods for one-mode networks, however this
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can result in lost information, and properties of the one-mode networks (such as high clustering

coefficients) that are due to the projection process rather than the original data [4]. Although the

former problem can be ameliorated by using both projections in analyses [5, 6], it is still desirable

to study the original two-mode network directly, for which specific methods are required [4].

In studying one-mode networks, a central concept is triadic closure, the tendency for a path of

length two (a ‘two-path’; three nodes connected by two edges) to be ‘closed’ into a triangle by the

addition of a third edge. In the context of social networks, this is the process of a friend of a friend

becoming themselves a friend, and is perhaps most well known via the ‘strength of weak ties’ [7]

argument, whereby an open two-path of strong ties is the ‘forbidden triad’, which is ‘forbidden’

because the two actors with strong ties to a common third actor must themselves have a strong tie.

In a bipartite network, however, a closed triad (triangle) is impossible; indeed it is a defining feature

of bipartite graphs that only cycles of even length are possible [8]. Therefore, the smallest possible

cycle in a bipartite graph is a four-cycle, and hence four-cycles are frequently used to measure closure

in bipartite networks [9, 10].

An example of a social process that creates four-cycles is peer referral in director interlock

networks [9, 11]. If a director on the boards of two companies recruits a director from one of them

to also sit on the board of the other, then an open three-path is closed, forming a four-cycle.

Four-cycles in bipartite networks also have the particular importance that, together with the

degree distribution, they explain the degree assortativity in the one-mode projected network

[12, 13].

Exponential random graph models (ERGMs) are a widely used model for social [14–17], and

other [18–20] networks. Specific forms of the ERGM have been developed for two-mode networks

[21–24], however, as we shall show in this work, existing ERG models for bipartite networks often

have problems modelling four-cycles, and hence can frequently not adequately model closure in

bipartite networks.

In this work, we will show that, despite the importance of four-cycles in two-mode networks,

ERGM terms to model four-cycles in such networks are relatively rarely used, in contrast to the

ubiquity of terms modelling triadic closure in one-mode networks. We will then describe some

problems with existing configurations for modelling four-cycles that could explain their relatively

infrequent use, and propose new ERGM configurations for modelling four-cycles to help overcome

these problems. We will discuss the interpretation of these new parameters, and their position

in the dependence hierarchy of Pattison and Snijders [25]. We will then demonstrate the new

configurations using simulation experiments and demonstrate their use on a canonical example of

an empirical two-mode network.

2. THE ERGM
An exponential-family random graph model (ERGM) is a probability distribution with the form

Pr

θ
(X = x) =

1

κ(θ)
exp

(∑
C

θCgC(x)

)
(2.1)

where

• X = [Xij] is square binary matrix of random tie variables,

• x is a realization of X,

• C is a ‘configuration’, a set of nodes and a subset of ties between them, designed in order to

model a particular structure of interest,

• gC(x) is the network statistic for configuration C,

• θ is a vector of model parameters, where each θC is the parameter corresponding to configu-

ration C,
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• κ(θ) =
∑

x∈Gn
exp

(∑
C θCgC(x)

)
, where Gn is the set of all square binary matrices of order

n (graphs with n nodes), is the normalizing constant to ensure a proper distribution.

We will use the notation xij (where 1 ≤ i ≤ n, 1 ≤ j ≤ n) for elements of the binary adjacency

matrix x. In this work we consider only the case of undirected networks, so xij = xji, and the

cardinality of Gn is |Gn| = 2
n(n−1)/2

. In the case of bipartite networks, the two disjoint node sets

are denoted A and B, with sizes NA = |A| and NB = |B| respectively, and so NA + NB = n, and

xij = 0 if both i and j are in node set A or both i and j are in node set B. In this bipartite case, the

normalizing constant is κ(θ) =
∑

x∈GBipartite
NA ,NB

exp

(∑
C θCgC(x)

)
, where GBipartite

NA,NB
is the set of all

bipartite graphs with node set sizes NA and NB. This set has cardinality |GBipartite
NA,NB

| = 2
NANB

.

Estimating the value of the parameter vector θ which maximizes the probability of the observed

graph, that is, the maximum likelihood estimator (MLE), enables inferences regarding the under-

representation (negative and statistically significant estimate) or over-representation (positive

and statistically significant estimate) of the corresponding configurations. These inferences are

conditional on the other configurations included in the model, which need not be independent.

Estimating the MLE of (2.1) is computationally intractable due to the normalizing constant

κ(θ) (specifically, the size of the set of graphs it sums over). Therefore, Markov chain Monte Carlo

(MCMC) methods are usually used [26–28]. One such algorithm is the ‘Equilibrium Expectation’

(EE) algorithm [29–31], which was recently shown to converge to the MLE [20, 31].

ERG models with only simple configurations (such as the Markov edge plus triangle model)

can be prone to problems with phase transitions or ‘near-degeneracy’ [17, 32–38]. Such problems

are typically avoided by the use of ‘alternating’ [33, 39, 40] or ‘geometrically weighted’ [41, 42]

configurations. The former are parameterized with a decay parameter λ controlling the rate at

which the weight of contributions from additional terms in the statistic decay. The corresponding

parameter for the geometrically weighed configurations can be estimated as part of the model, in

which case it becomes a ‘curved ERGM’ [43], however in this work we will use fixed values of λ for

the ‘alternating’ configurations.

In order to model two-mode networks, and in particular affiliation networks, Wang et al. [21]

define the alternating k-two-path statistics K-CA and K-CP, implemented as XACA and XACB

in MPNet [44, 45], and BipartiteAltKCyclesA and BipartiteAltKCyclesB in EstimNetDirected

(https://github.com/stivalaa/EstimNetDirected):

zK-CA(λ) = zXACA(λ) = zBipartiteAltKCyclesA(λ) = λ
∑
i∈B

∑
{l∈B : l<i}

[
1 −

(
1 −

1

λ

)L2(i,l)
]

(2.2)

where λ > 1 is the decay parameter, and L2(i, l) is the number of two-paths connecting i to l:

L2(i, l) =

∑
h̸=i,l

xihxhl. (2.3)

The corresponding change statistic is [21]:

δK-CA(λ)(i, j) = δXACA(λ)(i, j) = δBipartiteAltKCyclesA(λ)(i, j) =

∑
l∈B

[
xil

(
1 −

1

λ

)L2(j,l)
]

(2.4)

=

∑
l∈N(i)

(
1 −

1

λ

)L2(j,l)
. (2.5)
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where N(i) denotes the neighbours of node i, that is, nodes k ̸= i such that xik = 1, or, equivalently,

d(i, k) = 1, where d(u, v) is the geodesic distance from u to v. The statistic and change statistic for

BipartiteAltKCyclesB (K-CP or XACB) are defined similarly.

3. LITERATURE SURVEY
In order to get an overview of which effects are used in modelling bipartite networks with ERGMs,

and how well they fit four-cycles, we conducted a comprehensive survey of publications which

included ERG models of bipartite networks. To be included, a publication must contain one or more

ERG models of one or more empirical bipartite (two-mode) networks. There must be sufficient

detail given to know at least the parameters included in the models, and their estimated signs and

statistical significance. Models of one-mode projections of two-mode networks were excluded; we

only consider ERG models of the bipartite network itself. Models of multilevel networks were

excluded, although if there is a model of just the cross-level (bipartite) network, this is included. The

papers included in the survey are listed in Supplementary Table SA1 in Supplementary Appendix

SA, which also contains further details of the literature survey.

Most of the models in Supplementary Table SA1 were estimated with the BPNet [46], MPNet

[44, 45], or statnet [47–53] software, but a small number were estimated either by maximum

pseudo-likelihood estimation (MPLE) or with Bayesian methods using the Bergm [54, 55] soft-

ware. The one model included that was estimated with Bergm contains no terms to model four-

cycles or goodness-of-fit tests including four-cycles [56]. Of the ten models (across three publica-

tions) estimated by MPLE, only one contains a term to model four-cycles, and this is found to be

positive and significant [57].

Table 1 summarizes the parameter estimates in models from the literature in Supplementary Table

SA1 that were estimated using BPNet or MPNet, and contain the four-cycles parameter C4, or the

bipartite alternating k-two-path parameters (K-CP and K-CA) defined in Wang et al. [21]. Less than

a third (20/63) include the four-cycles parameter, less than half (30/63) include either of the two

alternating k-two-path parameters, and less than 30% (17/63) include both K-CP and K-CA.

Table 2 summarizes the parameter estimates in models from the literature in Supplementary

Table SA1 that were estimated using statnet, and which contain the four-cycle term, the bipartite

geometrically weighted dyadwise shared partner distribution (gwb1dsp or gwb2dsp) term, the

statnet equivalent of the K-CP and K-CA parameters, or the geometrically weighted non-edgewise

shared partner (gwnsp) term. Only one model estimated with statnet contained an explicit term for

four-cycles [58]. Further, only 5/43 models contain a gwb1dsp pr gwb2dsp term at all, and only

two models contain both (Lubell and Robbins [59] have two models, both of which include both

gwb1nsp and gwb2nsp).

Less than a quarter (26/117) of the models include an explicit assessment of goodness-of-fit to

four-cycles, and of those, the majority (18/26) are good. Only seven of these are for models that

explicitly include C4 as a model parameter, and, as expected of any converged model containing

this term, these models fit four-cycles well. Conversely, all of the models which are described as

having a poor fit to four-cycles in the goodness-of-fit procedure are models that do not contain the

Table 1. Counts of parameters in models estimated by BPNet or MPNet (total 63) in the reviewed

literature

C4 K-CP K-CA

Total estimated 20 30 25

Negative 14 20 15

Negative and signif. 5 14 9

Positive 6 10 10

Positive and signif. 4 7 2
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Table 2. Counts of parameters in models estimated by statnet (total 43) in the reviewed literature
a

cycle(4) gwb1dsp gwb2dsp gwnsp

Total estimated 1 2 5 4

Negative 1 1 2 1

Negative and signif. 1 1 0 0

Positive 0 1 3 3

Positive and signif. 0 1 2 3

aThe counts for gwb1dsp and gwb2dsp include those for the equivalent parameters gwb1nsp and gwb2nsp, respectively.

C4 parameter. However, of these eight models, five contain either K-CA or K-CP, and one contains

both.

This relative rarity of models containing terms to model closure (four-cycles) in bipartite

networks, or assess goodness-of-fit to four-cycles, is in stark contrast to ERG modelling for one-

mode networks, where terms modelling triadic closure, such as triangles, alternating-k-triangles,

or geometrically weighted edgewise shared partners (gwesp in statnet) are almost always included

in models, since triadic closure (as evidenced by clustering, or transitivity, in the network), is a

well-known feature of social networks [7, 60, 61]. For example, Clark and Handcock [62] use

the latent order logistic (LOLOG) model [63] to reproduce ERG models for 13 networks from

peer reviewed papers, and all of these models contain alternating-k-triangles [39, 64–66], gwesp

[67–72], or three-cycles [64, 73] terms, and in the majority of cases the results are able to be

replicated with a triangle term in the LOLOG model [62]. And yet, despite higher than expected

numbers of four-cycles (or bipartite clustering coefficient) being a notable feature of some bipartite

networks, such as director interlock networks [9, 10], and collaboration and communication net-

works [10], the literature survey presented here shows that terms to model four-cycles are relatively

rarely used in published ERG models of bipartite networks. This could be due to researchers

choosing not to model bipartite closure, however, as shown by some examples in the following

section, it can also be due to difficulties in obtaining converged model estimates when using existing

model terms.

4. PROBLEMS WITH EXISTING BIPARTITE ERGM STATISTICS
It is notable that in the original paper proposing K-CA and K-CP configurations [21], they are

explicitly described as k-two-path statistics, and in fact they are just bipartite versions of the one-

mode alternating-k-two-path statistic, representing multiple shared partners (gwdsp in statnet, and

then later gwb1dsp and gwb2dsp for bipartite networks). There is, however, already some ‘semantic

slippage’ into interpreting them as ‘cycles’ or ‘closure’—even though they only actually include

cycles (closure) when k > 1 (k = 1 is a two-path, k = 2 is a four-cycle; see Fig. 3 in Wang et al. [21]).

For example, ‘. . . a better chance of achieving model convergence when closure effects (K − CP
and K − CA) are included in the model’ [21]. Even the name K-CA (or K-CP) suggests ‘cycle’

or ‘closure’ by the use of the ‘C’ (C4 is used for four-cycles in the paper). Wang et al. [22] goes

back to naming the K-CP and K-CA statistics as A2P-A and A2P-B and describing them as ‘shared

affiliations (alternating two-paths)’ [22]. However the MPNet terminology is XACA and XACB

[44, 45], again with the ‘C’ suggestive of cycles or closure, and the EstimNetDirected [74] software

(https://github.com/stivalaa/EstimNetDirected) refers to these effects as BipartiteAltKCyclesA

and BipartiteAltKCyclesB.

In the influential book edited by Lusher et al. [14], Wang [23] describes K-CA and K-CP explicitly

as ‘alternating A cycles’ and ‘alternating P cycles’ [23], with ([23], Fig. 10.11) captioned ‘Alternating

2-paths’ but with the figure panels labelled ‘A cycles (KCA)’ and ‘P cycles (KCP)’ respectively [23].

This description or interpretation is carried over into the empirical part of the book, with Harrigan

and Bond [75], applying bipartite ERGM to a director interlock network, describing K-CP and

K-CA as ‘alternating k-cycles’ for directors and corporations respectively [75], and in the ERGM
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results tables as ‘Director 4-cycles’ and ‘Corporation 4-cycles’ [75]. It is also notable that Harrigan

and Bond [75] describes the difficulty of fitting models with K-CA and K-CP and the resulting poor

goodness-of-fit for the four-cycle statistic:

We found for this particular network that we cannot have both K-Cp and K-Ca in the same

model due to convergence issues. In line with Wang, Sharpe, Robins, and Pattison (2009),

we present two alternative models, one with each possible k-cycle parameter. . . . However, in

line with Wang, Sharpe, Robins, and Pattison (2009), we had a poor fit on the classic 4-cycle

parameter [C4], which suggests that improving these structural effects is a substantial area of

future research [75].

Given the results of the literature review described in Section 3 it would seem, however, that no

such research improving these structural effects has been published yet, and this work may be the

first attempt to do so.

We may conclude from this that the K-CA and K-CP statistics count too many things other than

four-cycles to be usefully used and interpreted as bipartite closure in many cases. Specifically, they

count simple two-paths (k-two-paths with k = 1) as their first (highest weighted) term. This results

in situations where long paths or cycles contribute to the K-CP and K-CA statistics, despite having

exactly zero four-cycles (see Table 3). Perhaps even more problematically, high-degree nodes, or

stars, for example the ‘Nine-star’ structure in Table 3, result in large values of K-CA or K-CP (XACA

or XACB in MPNet terminology), depending on which node set the hub node is in, but also have

exactly zero four-cycles. It seems clear that large networks are likely to contain many stars, and many

paths (of length two or more; and note that a two-star is just a two-path), as well as large cycles [76,

77], and these will contribute to large values of the K-CP and/or K-CA statistics, but nothing to the

number of four-cycles (the C4 statistic).

In addition, Robins et al. [39] report that interpretation of the alternating k-two-paths parameter

is problematic: ‘In this article, we do not concentrate on alternating k-two-path parameters. For

some data, we have found it important to include them in models but further work is needed to

understand better their effect when included with other parameters’ [39]. Martin [78] described

this as the authors ‘being somewhat mystified by this statistic’ [78], and that most ERG modellers

would not be able to describe a ‘clear behavioral-process analogue to the once-canonical alternating

two paths statistic’ [78].

Therefore, we propose new statistics that count four-cycles (and not two-paths). In the following

two sections we propose two different new statistics. In Section 5, we propose a simple new statistic

based on K-CA and K-CP. Unfortunately, however, this statistic is shown to be more, rather than

less, prone to degeneracy than K-CA and K-CP. Therefore, in Section 6 we propose a new statistic

based on counting four-cycles, but which is less prone to problems with near-degeneracy than the

simple four-cycles parameter or the K-CA and K-CP parameters.

5. A SIMPLE, BUT UNSUCCESSFUL, NEW STATISTIC
A simple solution to the problem, described in Section 4, that the K-CA (2.2) and K-CP statistics

count simple two-paths as their first term (k-two-paths, k = 1), is to remove the first term and reverse

the signs. In this way, the first, positive, term no longer counts open two-paths, but rather counts

four-cycles. We define a new statistic BipartiteAltK4CyclesA as

zBipartiteAltK4CyclesA(λ) = −
(

zBipartiteAltKCyclesA(λ) − zTwoPathsA
)

, (5.1)

and its change statistic

δBipartiteAltK4CyclesA(λ)(i, j) = −
(
δBipartiteAltKCyclesA(λ) − deg(i)

)
(5.2)
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Table 3. Statistics of some example bipartite networks
a

Name Visualization NA NB L C4 XACA XACB BpNP4CA BpNP4CB

Two-path 1 2 2 0 1 0 0 0

Four-cycle 2 2 4 1 1.5 1.5 2 2

Four-cycles-3 2 3 6 3 4.5 1.75 3.4641 4.24264

Ten-cycle 5 5 10 0 5 5 0 0

Nine-star 1 9 9 0 36 0 0 0

Four-fan-3 4 6 12 3 16.5 4.5 4.73205 6

aL is the number of edges, C4 the number of four-cycles, and BpNP4CA and BpNP4CB are the new statistics BipartiteFourCy-
clesNodePowerA and BipartiteFourCyclesNodePowerB. Nodes in node set A are represented as red circles, and nodes in node set
B as blue squares.
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where

zTwoPathsA =

∑
i∈B

∑
{l∈B : l<i}

L2(i, l) (5.3)

is the number of two-paths connecting nodes in node set B (and which therefore go through a

node in node set A), L2(i, l), defined by (2.3), is the number of two-paths connecting i to l, and

deg(i), the degree of node i, is the change statistic for the number of two-paths through node i.
BipartiteAltK4CyclesB and its change statistic are defined similarly.

Table 4 is a copy of Table 3, but with the new BipartieAltK4CyclesA and BipartiteAltK4CyclesB

statistics (labelled BpAK4CA and BpAK4CB respectively) included (and the NA, NB, L,

BpNP4CA, and BpNP4CB columns removed to make space). This table shows the value of the

new statistics on some small example networks, demonstrating, that, by design, they are zero for

networks in which there are no four-cycles.

Unfortunately, however, simulation experiments indicate that the new BipartiteAltK4CyclesA

and BipartiteAltK4CyclesB parameters are actually more problematic with respect to near-

degeneracy than the original K-CA and K-CP parameters. Figure 1 shows the results of simulation

experiments similar to those described by Wang et al. [21]. Bipartite networks were simulated

with 30 nodes in node set A and 20 nodes in node set B with the Edge parameter set to −3.0. In

three different sets of simulations, for each of the BipartiteAltKCyclesB, BipartiteAltK4CyclesB, and

BipartiteFourCyclesNodePowerB (defined in Section 6) parameters, the parameter in question is

varied from −1.00 to 10.0 in increments of 0.01 for each of two values of λ (λ= 2 and λ = 5) for

BipartiteAltKCyclesB and BipartiteAltK4CyclesB, and for each of two values of α (α = 1/2 and

α = 1/5) for BipartiteFourCyclesNodePowerB. The networks were simulated using the Simula-

teERGM program from the EstimNetDirected software package, using the basic ERGM sampler,

with a burn-in of 10
5

iterations and an interval of 10
4

iterations between each of 100 samples,

to ensure that samples are drawn from the equilibrium ERGM distribution, and are not too

autocorrelated.

The right panel in Fig. 1a shows the results of a simulation similar to that shown in Fig. 9 of

Wang et al. [21]: the number of edges increases smoothly, giving good coverage of the graph space

(with respect to density, at least). The left panel shows the value of the statistic corresponding to the

parameter BipartiteAltKCyclesB itself. The behaviour of this curve is starting to look as if it could

be prone to near-degeneracy, with a fairly steep increase at a critical value.

The graphs in Fig. 1b show the results for the new BipartiteAltK4CyclesB parameter. In this

case, both the Edge statistic (right) and BipartiteAltK4CyclesB statistic itself (left) show a phase

transition, where a critical value of the parameter separates an empty graph regime from a complete

graph regime. This model is therefore near-degenerate, suggesting that this new parameter may in

fact be less useful than the original K-CA and K-CP parameters.

For completeness, Fig. 1c shows the results for the new BipartiteFourCyclesNodePowerB param-

eter defined in the following section (Section 6). When α = 0.5 an abrupt change from a near-empty

to a full graph occurs, however, as shown by the result for α = 0.2, this can be removed by decreasing

the value of α.

In summary, we defined new BipartiteAltK4CyclesA and BipartiteAltK4CyclesB parameters as

modified forms of the K-CA and K-CP parameters defined in Wang et al. [21], in order to count

four-cycles but not open two-paths. However, near-degeneracy was exhibited in the simulation

experiments (similar results occur with the larger simulated networks described in Section 7; data

not shown). We conclude, therefore, that although these new parameters could potentially be useful

in some cases, they are more prone to near-degeneracy and not as useful as the existing K-CA and

K-CP parameters. Therefore, in the following section, we define new statistics that weight four-cycle

counts in a different way.
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Table 4. Statistics of some example bipartite networks
a

Name Visualization C4 XACA XACB BpAK4CA BpAK4CB

Two-path 0 1 0 0 0

Four-cycle 1 1.5 1.5 0.5 0.5

Four-cycles-3 3 4.5 1.75 1.5 1.25

Ten-cycle 0 5 5 0 0

Nine-star 0 36 0 0 0

Four-fan-3 3 16.5 4.5 1.5 1.5

aC4 is the number of four-cycles, and BpAK4CA and BpAK4CB are the new statistics BipartiteAltK4CyclesA and Bipar-
titeAltK4CyclesB, respectively. Nodes in node set A are represented as red circles, and nodes in node set B as blue squares.
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Figure 1. Effect of varying (a) the BipartiteAltKCyclesB parameter, (b) the BipartiteAltK4CyclesB

parameter, and (c) the BipartiteFourCyclesNodePowerB parameter on the statistic corresponding to the

parameter itself (left) and the Edge statistic (right). Each graph plots the mean value of the statistic (over

100 simulations) for two different values of the relevant λ or α parameter.

6. NEW STATISTICS FOR MODELLING FOUR-CYCLES IN
BIPARTITE ERGMS

Since a four-cycle is a combination of two two-paths [33], the number of four-cycles is

C4 =
1

2

∑
i<j

(
L2(i, j)

2

)
. (6.1)

The sum in Equation (6.1) is over the

(n
2
)

pairs of nodes in the graph, with the factor of
1
2 to

account for the double-counting due to the symmetry of each four-cycle containing two distinct
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Figure 2. C4(i) is the number of four-cycles involving a node i.

pairs of nodes, each connected by two two-paths. The number of four-cycles containing a particular

node i is

C4(i) =

∑
j̸=i

(
L2(i, j)

2

)
(6.2)

=

∑
{j : d(i,j)=2}

(
L2(i, j)

2

)
(6.3)

Some illustrative examples of the value of C4(i) for different nodes in some small graphs are shown

in Fig. 2.

The total number of four-cycles (6.1) can also be expressed in terms of the number of four-cycles

at each node (6.2) as

C4 =
1

4

∑
i

C4(i) (6.4)

where the factor of
1
4 accounts for the fact that each four-cycle is counted four times, once for each

node it contains. The FourCyclesNodePower statistic is then defined as

zFourCyclesNodePower(α) =

∑
i

[C4(i)α] (6.5)

where 0 < α ≤ 1 is the exponent for, in the terminology of Wilson et al. [79], the ‘α-inside’

weighting, since the subgraph counts (C4(i) here) are exponentiated before summing over all

subgraphs. The ‘α-outside’ weighting would be to exponentiate the statistic after summing over all
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Figure 3. Representations of the new configurations (a) FourCyclesNodePower, (b)

BipartiteFourCyclesNodePowerA, and (c) BipartiteFourCyclesNodePowerB. Nodes in node set A are

shown as red circles, and nodes in node set B are shown as blue squares.

subgraphs, that is, in this case it would be

[∑
i C4(i)

]α
. As discussed in Wilson et al. [79], the α-

inside weighting leads to local dependence as usually used in ERGMs, while the α-outside weighting

leads to global dependence, in which all ties are dependent on each other to some degree [79]. The

nature of the local dependencies induced by the new change statistics defined here using the α-inside

weighting are discussed in Section 6.3 below.

The statistics described in this section so far are equally applicable to one-mode and two-mode

(bipartite) graphs. When dealing with bipartite graphs, however, it is often useful to consider

statistics of the two node sets separately. Hence we also define

zBipartiteFourCyclesNodePowerA(α) =

∑
i∈A

[C4(i)α] (6.6)

and

zBipartiteFourCyclesNodePowerB(α) =

∑
j∈B

[C4(j)α] (6.7)

for the two node sets A and B respectively. Because the sets A and B are disjoint, we have

zFourCyclesNodePower(α) = zBipartiteFourCyclesNodePowerA(α) + zBipartiteFourCyclesNodePowerB(α).

(6.8)

Representations of the new configurations are shown in Fig. 3. The vertical ellipsis

.

.

. in the figures is

to indicate that the configuration includes any number [up to ⌊(n − 1)/3⌋, since, apart from the one

shared node, each four-cycle must include at most three distinct nodes] of four-cycles all involving

a shared node (the central node in the figures).

Table 3 shows the values of the BipartiteFourCyclesNodePowerA (BpNP4CA) and Bipartite-

FourCyclesNodePowerB (BpNP4CB) statistics for some small example bipartite networks, with

the parameter α = 0.5 (the alternating k-two-path statistics XACA and XACB are shown with their

parameter λ = 2.0). Note that, unlike the XACA and XACB (K-CA and K-CP) statistics, these

new statistics have the value zero for structures that contain no four-cycles (such as the two-path,

ten-cycle, and nine-star structures in Table 3).

The ‘four-fan-3’ graph in Table 3 is the same graph as the representation of the BipartiteFour-

CyclesNodePowerA configuration in Fig. 3b (ignoring the vertical ellipsis so that exactly three

four-cycles are present). Note, however, that this has the counterintuitive property that, although

it is a representation of the BipartiteFourCyclesNodePowerA configuration, in fact the value of the

BipartiteFourCyclesNodePowerB statistic is greater than that of the BipartiteFourCyclesNodePow-

erA statistic for this graph. This is because the value of the statistic [(6.6) or (6.7)] is the sum over all
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nodes in the relevant node set (A or B, respectively) of the four-cycle count at each node (6.2) raised

to the power α (‘α-inside’ weighting). Therefore, in this graph, the nodes in mode B contribute more

to the total as each one (of the six) is involved in exactly one four-cycle (and hence raising to the

power of α still contributes one to the sum), while of the four nodes in mode A, three are involved

in only one four-cycle, while the fourth is involved in three four-cycles and hence contributes only

3
α

≈ 1.73205 (when α = 0.5). Generalizing this four-fan-3 graph to four-fan-k (k ≥ 1, and if k = 1

the graph is just a four-cycle) with the central high-degree node in node set A, we have:

NA = k + 1 (6.9)

NB = 2k (6.10)

n = 3k + 1 (6.11)

L = 4k (6.12)

C4 = k (6.13)

zBipartiteFourCyclesNodePowerA(α) = kα
+ k (6.14)

zBipartiteFourCyclesNodePowerB(α) = 2k (6.15)

Because 0 < α ≤ 1, the BipartiteFourCyclesNodePowerA statistic (6.14) will always be less than

(or equal to, if α = 1 or k = 1) the BipartiteFourCyclesNodePowerB statistic (6.15) for this family

of graphs.

6.1. Interpretation of the new parameters
Interpretation of the FourCyclesNodePower parameter is that a positive value increases the number

of four-cycles and a negative value decreases the number of four-cycles, relative to a value of zero.

A smaller value of the exponent α means that additional four-cycles including the same node

contribute less than if those cycles involved distinct nodes.

Interpretation of the BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNodePowerB

parameters is rather more complicated and is illustrated in Figs 4 and 5. These figures show

statistics (Fig. 4) and network visualizations (Fig. 5) of simulated bipartite networks with different

combinations of positive, zero and negative BipartiteFourCyclesNodePowerA and BipartiteFour-

CyclesNodePowerB parameters. The simulated networks have 100 nodes in node set A and 50

nodes in node set B and are simulated with common ERGM parameters Edge, BipartiteAltStarsA

[λ = 2], and BipartiteAltStarsB [λ= 2] set to −6.0, −0.4, and 1.0, respectively. For Bipartite-

FourCyclesNodePowerA [α = 1/5] and BipartiteFourCyclesNodePowerB [α = 1/5] the negative

(‘neg’) parameter value is −1.5 and the positive (‘pos’) parameter value is 6.5.

Note that in a bipartite network, any four-cycle must contain two nodes in node set A and

two nodes in node set B. So how can we get more four-cycles in one mode than the other?

The answer is that the four-cycle counts for the two must be equal, but the weighted node-

oriented four-cycle counts (6.6) and (6.7) can differ. As discussed in Section 6, the statistic

BipartiteFourCyclesNodePowerA (6.6) is maximized by having four-cycles involving distinct pairs

of nodes in node set A (rather than many four-cycles involving the same node in node set A). If the

BipartiteFourCyclesNodePower parameter for A is positive and for B is zero (or negative) then we

tend to get more mode A nodes involved in four-cycles, with the same mode B nodes participating

in many four-cycles, since the statistic is higher by having different nodes in the four-cycles, than for

having the same node involved in many four-cycles. In the examples illustrated in Fig. 5, this results

in the mode A nodes being part of a denser core with lots of four-cycles with a smaller number of B
nodes, resulting in isolated B nodes. And vice versa for A zero (or negative) and B positive (‘zero.pos’

and ‘neg.pos’; these are perhaps clearer as there are more A nodes than B nodes in the network).

Particularly in the ‘neg.pos’ case, we can see a core of mode B nodes connected to a small number of
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Figure 4. Effect of different combinations of negative, zero, and positive values of the

BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNodePowerB parameters on (a) the

BipartiteFourCyclesNodePowerA statistic, (b) the BipartiteFourCyclesNodePowerB statistic and (c) the

FourCycles statistic. Box plots show the statistics of 100 simulated networks.

central mode A nodes in four-cycles (as well as others not involved in four-cycles) and many mode

A isolates. If BipartiteFourCyclesNodePower for both A and B are positive then there are even more

four-cycles, but they are more evenly distributed between the A and B nodes.

To try to make this interpretation clearer, consider Fig. 6. The box plots in this figure show the

number of unique nodes in each node set (A or B) that are involved in four-cycles. When the

BipartiteFourCyclesNodePowerA parameter is positive and the BipartiteFourCyclesNodePowerB

parameter is zero or negative, then a large number of node set A nodes are involved in four-cycles,

but only a small number of node set B nodes are. So the same node set B nodes are involved in
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Improving ERGMs for bipartite networks · 15

Figure 5. Examples of networks simulated with different combinations of negative, zero, and positive

values of the BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNodePowerB parameters, drawn

from the simulations shown in Fig. 4. Nodes in node set A are shown as red circles, and nodes in node set

B are shown as blue squares.

multiple four-cycles with many different node set A nodes. If BipartiteFourCyclesNodePowerB is

positive and BipartiteFourCyclesNodePowerA is negative or zero, then the same nodes in mode set

A are involved in multiple four-cycles with many different nodes from node set B.

Equation (6.8) implies that there are two degrees of freedom for the three parameters; for example

we can include both BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNodePowerB in a

model, but not also FourCyclesNodePower since it is the sum of the other two.

6.2. Change statistics for the new statistics
The change statistic [28, 33, 43], that is, the difference in the statistic caused by adding a new edge

(i, j), for the four-cycles statistic (6.1) is

δC4(i, j) =

∑
k∈N(i)

L2(j, k) (6.16)

=

∑
k∈N(j)

L2(i, k). (6.17)

The change statistic for the FourCyclesNodePower statistic (6.5) is then:

δFourCyclesNodePower(α)(i, j) = [C4(i) + δC4(i, j)]
α

− C4(i)α

+ [C4(j) + δC4(i, j)]
α

− C4(j)α
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Figure 6. For each combination of negative, zero, and positive values of the

BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNodePowerB parameters, there are two box

plots. They show the number of unique nodes in node set A (left, red) and node set B (right, blue)

involved in four-cycles. The simulations are the same as those used in Fig. 4, and as in that figure,

combinations of only negative and zero values are not shown as they result in extremely low density graphs

with no four-cycles (similar to the zero.zero case).

+

∑
k∈N(i)

[(
C4(k) + L2(k, j) + xkjL2(k, i)

)α
− C4(k)α

]
+

∑
{k : k∈N(j)∧ k̸∈N(i)}

[(C4(k) + L2(k, i))α − C4(k)α] . (6.18)

The four terms in Equation (6.18) count the contributions from, respectively, node i, node j, the

neighbours of node i, and the neighbours of node j which are not also neighbours of node i. Note

that in the third term (the contribution from neighbours of node i), a node k can only be a neighbour

of both node i and node j [that is, k ∈ N(i) ∧ xkj = 1] if the network is not bipartite.

The change statistic for the bipartite four-cycles statistic for the node set A (6.6) is simpler than

the general case (6.18), as we only count the contributions from the nodes in node set A. Specifically,

we have:

δBipartiteFourCyclesNodePowerA(α)(i, j) = [C4(i) + δC4(i, j)]
α

− C4(i)α

+

∑
k∈N(j)

[(C4(k) + L2(k, i))α − C4(k)α] (6.19)

where i ∈ A, j ∈ B, and k ∈ A. The change statistic for BipartiteFourCyclesNodePowerB (6.7) is

defined analogously.

6.3. Position of the new statistics in the dependence hierarchy
The configurations allowed in a model are determined by the assumptions as to which ties are

allowed to depend on which other ties. Pattison and Snijders [25] (subsequently elucidated by
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Figure 7. Dependence hierarchy, adapted from Wang et al. ([22], Fig. 3). SI0 is not defined.

Wang et al. [22] for bipartite networks, and more recently by Pattison et al. [80]) created a two-

dimensional hierarchy of dependence assumptions, where the two dimensions are two facets of

proximity: the form of the proximity condition, and the maximum distance between dependent

ties. This two-dimensional hierarchy of dependence assumptions is illustrated in Fig. 7, showing a

partial order structure, in which, if one dependence condition can be implied by another, it can be

reached by a downwards path from the first to the second [22].

In order to describe the proximity conditions, it is useful to define some notation for neighbour-

hoods in a graph. In Section 2 we defined N(i) as the neighbours of node i, that is, nodes k ̸= i
such that d(i, k) = 1. Following Pattison et al. [80], we now define Nq(u), the q-neighbourhood of

node u, as the set of nodes within geodesic distance q of u, that is, nodes v such that d(u, v) ≤ q.

Note that N(u) as earlier defined in Section 2 is distinct from N1(u), the former being defined as

nodes with a geodesic distance of exactly 1 from u (and hence excluding u itself), while the latter

includes u itself as d(u, u) = 0. Further, we define Nq(U), the q-neighbourhood of node set U, as

Nq(U) = {v : v ∈ Nq(u) for some u ∈ U}, that is, the set of nodes whose distance to some node in

U is no more than q.

The four forms of proximity conditions, describing the nature of the proximity between the

neighbourhoods of two pairs of nodes whose respective tie variables are hypothesized to be

conditionally dependent only if the proximity condition holds, can be summarized as follows [80],

in order of increasing generality:

1. Strict p-inclusion. SIp (p ≥ 1) holds if the p-neighbourhood of each node in a pair includes

both of the nodes in the other pair.

2. p-inclusion. Ip (p ≥ 0) holds if the p-neighbourhood of each pair of nodes includes the other

pair.

3. Partial p-inclusion. PIp (p ≥ 0) holds if the p-neighbourhood of one pair of nodes includes

the other pair.

4. p-proximity. Dp (p ≥ 0) holds if the p-neighbourhood of one pair of nodes has a non-empty

intersection with the other pair.

The dependence condition I1 is equivalent to the widely-used ‘social circuit’ dependence assump-

tion [22], in which two ties are conditionally dependent if they form a four-cycle if both present [33,
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40, 81, 82], and PI1 allows the ‘alternating pendant-triangle’ statistics recently described by Pattison

et al. [80].

The simple but unsuccessful new statistics described in Section 5 are in the same dependence

class (I1, ‘social circuit’) as the original K-CA and K-CP statistics from which they are derived.

The change statistic for FourCyclesNodePower (6.18) in computing the probability of a new edge

(i, j), depends only on edges between nodes in the two-neighbourhoods of i and of j, since any two

nodes in a four-cycle must be at a geodesic distance of at most two from each other (a four-cycle

is a pair of nodes with two two-paths between them). Hence any edges on which the probability of

edge (i, j) depend must be in the two-neighbourhood of {i, j}. This puts the FourCyclesNodePower

configuration in the dependence class two-proximity (D2): the p-neighbourhood (with p = 2) of

one pair of nodes has a non-empty intersection with the other pair [25, 80]. D2 is labelled with a

red outline in the dependence hierarchy diagram shown in Fig. 7.

Because of the partial order structure of the dependence hierarchy, the stricter proximity forms

for a fixed p imply the more general ones (and Dp is the most general), and for a fixed proximity

condition, smaller p implies all the larger p (so D1 implies D2 for instance). Hence, to show that the

FourCyclesNodePower configuration, which is in D2, is not also in any more specific dependence

class, it is sufficient to show that it is not in D1 and also not in PI2 (see Fig. 7). To do so, we can use

Proposition 3 of Pattison et al. [80], which gives the properties that must hold for configurations

implied by the dependence structures associated with each proximity condition.

Proposition 3(d) of Pattison et al. [80] states that ‘For Dp, each configuration is a subgraph in

which every pair of edges lies on a path of length ≤ (p + 2)’ [80]. So for a configuration to be in

D1, every pair of edges must lie on a path of length three (or shorter). The FourCyclesNodePower

configuration (Fig. 3a) does not meet this requirement, since there are edges that do not lie on a

path of length three or less: consider, for example, a pair of edges incident to the outermost node in

the figure on two different four-cycles. These do not lie on a path of length three (but are on a path

of length four, satisfying the requirement for D2 but not D1). Hence the FourCyclesNodePower

configuration is not in dependence class D1.

Proposition 3(c) of Pattison et al. [80] states that ‘For PIp, each configuration is a subgraph in

which every pair of edges lies either on a cyclic walk of length ≤ (2p + 2) or on a cyclic walk of

length ≤ 2(p − r) + 1 with an additional path of length ≤ r + 1 attached to a node lying on

the cyclic walk, for 0 ≤ r ≤ p − 1’ [80]. So, for PI2, each configuration is a subgraph in which

every pair of edges is on a cyclic walk of length ≤ (2p + 2) = 6, or on a cyclic walk of length

≤ 2(p − 0) + 1 = 5 with an additional path of length ≤ 1 attached to a node on the cyclic walk,

or on a cyclic walk of length ≤ 2(p − 1) + 1 = 3 with an additional path of length ≤ 2 attached

to a node on the cyclic walk. Again, we can see that the configuration for FourCyclesNodePower

does not meet these conditions, considering a pair of maximally distant edges (those incident to

the outermost nodes in two different four-cycles in Fig. 3a). Such a pair of edges is neither on a six-

cycle, and nor is it on a five-cycle with an additional path of length at most one or a three-cycle with

an additional path of length at most two. Hence the FourCyclesNodePower configuration is not in

dependence class PI2.

In the case of the BipartiteFourCyclesNodePower (A and B) statistics for bipartite networks, the

same reasoning applies (see Fig. 3b and c).

6.4. Implementation
The new ERGM effects FourCyclesNodePower, BipartiteFourCyclesNodePowerA, and Bipartite-

FourCyclesNodePowerB are implemented in the EstimNetDirected [74] software, available from

https://github.com/stivalaa/EstimNetDirected. BipartiteFourCyclesNodePowerA and Bipartite-

FourCyclesNodePowerB are also implemented, as b1np4c and b2np4c, as user-contributed statnet

model terms [83, 84], available from https://github.com/stivalaa/ergm.terms.contrib. An example

is described in Section 8.
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To count the number of unique type A and B nodes that are involved in four-cycles in a two-

mode network, the CYPATH software (http://research.nii.ac.jp/∼uno/code/cypath.html) [85]

was used to enumerate all of the four-cycles (which are necessarily chordless in a bipartite network).

Scripts for data conversion, statistical analysis, and generating plots were written in R [86] using

the igraph [87, 88] and ggplot2 [89] packages.

7. SIMULATION EXPERIMENTS
In order to investigate the effect of the BipartiteFourCyclesNodePowerA parameter, and compare

it to that of the K-CA [21] (known as XACA in MPNet and BipartiteAltKCyclesA in EstimNet-

Directed) parameter, we conducted some simulation experiments. In these experiments, bipartite

networks with 750 nodes in node set A and 250 nodes in set B were simulated with the Edge,

BipartiteAltStarsA [λ = 2], and BipartiteAltStarsB [λ = 2] parameters set to −8.50, −0.20, and

2.00, respectively. In one set of experiments, the BipartiteAltKCyclesA parameter was varied from

−1.00 to 1.00 in increments of 0.01, for each of three values of λ: 2, 5, and 10. In another set of

experiments, the BipartiteFourCyclesNodePowerA parameter was varied from −1.00 to 2.00 in

increments of 0.01, for each of three values of α: 1/10, 1/5, and 1/2. The networks were simulated

using the SimulateERGM program from the EstimNetDirected software package, using the tie/no-

tie (TNT) sampler [90], with a burn-in of 10
7

iterations and an interval of 10
5

iterations between

each of 100 samples, to ensure that samples are drawn from the equilibrium ERGM distribution,

and are not too autocorrelated.

The results of these simulations are shown in Fig. 8. Using the BipartiteAltKCyclesA parameter

(left column) results in phase transition or near-degeneracy behaviour, with the statistic showing

a sudden sharp increase at a critical value of the parameter. At this critical value, the graph density

(Fig. 8a left plot) also sharply increases, as does the number of four-cycles (Fig. 8c left plot), which,

at parameter values less than the critical value, hardly increased at all. This behaviour is similar to

that of the simple Markov (edge-triangle) model described in Koskinen and Daraganova [40], and is

characteristic of near-degeneracy in ERGMs. This can prevent estimation of models which contain

parameters that cause this behaviour, and yet occurs in this case even when using an ‘alternating’

statistic, designed to try to avoid such behaviour [21]. Note that changing the λ parameter appears

merely to change the maximum value of the statistic; it does not remove or ‘smooth out’ the phase

transition. In contrast, when using the new BipartiteFourCyclesNodePowerA parameter (right

column) the phase transition behaviour is less apparent even for the highest value of α (1/2),

and can be smoothed out further as we decrease α. So, by appropriately setting α, we can use the

BipartiteFourCyclesNodePowerA parameter to generate smoothly varying numbers of four-cycles,

without suddenly tipping from a low-density low-clustering regime to a high-density high-clustering

regime with nothing in between, which did not seem to be possible on this example with the

BipartiteAltKCyclesA parameter.

8. EMPIRICAL EXAMPLE
The new statistics BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNodePowerB were

implemented in statnet as b1np4c and b2np4c, using the facility to define custom ergm model terms

[83, 84]. They are available at https://github.com/stivalaa/ergm.terms.contrib.

Here we demonstrate this implementation by using the statnet ergm package [51] with the new

user terms to estimate a model for the Davis ‘Southern Women’ network [91], obtained via the

latentnet R package [92, 93]. The network represents the participation of 18 women (first mode)

in 14 social events (second mode). This is a well-known affiliation network [94], having been

used as an example by Breiger [1] and many papers since, including two [21, 95] in the literature

survey (Supplementary Table SA1). Although the original publication [91] contains information

on the event times, with some exceptions [94, 96] this is not usually used, and we do not use this

information here.
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Figure 8. Effect of varying the BipartiteAltKCyclesA parameter (left) and

BipartiteFourCyclesNodePowerA parameter (right) on (a) the Edge statistic, (b) the statistic

corresponding to the parameter itself and (c) the FourCycles statistic. Each graph plots the mean value of

the statistic (over 100 simulations) for three different values of the λ or α parameter for

BipartiteAltKCyclesA and BipartiteFourCyclesNodePowerA, respectively.

The b1np4c and b2np4c model terms take the α (0 < α ≤ 1) value as a parameter,

with a default value of α = 0.5 if omitted. For example, to estimate a model with the b2np4c

(BipartiteFourCyclesNodePowerB) term with α = 1/5 (Model 4 in Table 5):

davis_model4 <- ergm(davis ˜ edges + gwb1degree(1, TRUE) +
gwb2degree(1, TRUE) + b2np4c(1/5),

control = control.ergm(main.method = "Stochastic-Approximation"))

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/13/4/cnaf017/8221426 by guest on 03 August 2025



Improving ERGMs for bipartite networks · 21

Table 5. ERGM parameter estimates for the Southern Women network, estimated with statnet. The table

was generated directly from the statnet models with the texreg R package [97].

Model 1 Model 2 Model 3 Model 4

edges –2:07∗∗∗ –0.20 0.47 –5.90∗∗∗

(0.34) (0.24) (0.31) (0.58)

b1star2 0.07

(0.07)

b2star2 0.18∗∗∗

(0.04)

gwb1deg.fixed.1 –083 –7.04∗∗∗ 10.60∗∗∗

(1.03) (1.51) (1.80)

gwb2deg.fixed.1 –2.26∗∗ 7.76∗∗ –6.95∗∗∗

(0.85) (2.48) (1.57)

gwb1dsp.fixed.0.5 0.45∗∗∗

(0.12)

gwb2dsp.fixed.0.5 –1.33∗∗∗

(0.30)

b2np4c.fixed.0.2 17.30∗∗∗

(1.86)

AIC 319.34 328.85 308.77 285.41

BIC 329.93 339.44 326.41 299.53

Log Likelihood –156.67 –161.43 –149.38 –138.71

∗∗∗P< 0.001; ∗∗p < 0.01; ∗p < 0.05.

Table 5 shows four models for the Southern Women network, estimated with the stochastic approxi-

mation algorithm [27]. Model 1, with only the edges and two-star terms for each mode, is the same as

([21], Model (8.3)). Model 2, using the geometrically weighted degree terms rather than two-stars,

is similar to ([21], Model (8.5)), but using the statnet gwb1degree and gwb2degree terms rather

than the BPNet alternating k-star terms K-SP and K-SA. Note the reversal of interpretation of signs

between K-SP/K-SA and gwb1degree/gwb2degree [98, 99]. Model 3, adding the geometrically

weighted dyadwise shared partner terms, is similar to ([21], Model (8.6)). Model 4 uses the new

b2np4c term rather than the geometrically weighted dyadwise shared partner terms gwb1dsp and

gwb2dsp (models with b1np4c did not converge).

Cycle length distribution goodness-of-fit plots for the four models are shown in Fig. 9, and

statnet goodness-of-fit plots in Supplementary Fig. SB1 (Supplementary Appendix SB). Note that

all four models fit acceptably well on all the statistics included in the goodness-of-fit tests (degree

distributions for each mode, dyadwise shared partners, and geodesic distance distribution), as well

as the cycle length distributions. In particular, the fit to four-cycle counts is good for all models,

including Model 1 and Model 2, which do not contain any terms to model four-cycles. It therefore

appears that Model 1 is the most parsimonious explanation of this data, just as discussed in Wang

et al. [21]. This model has a positive and statistically significant event two-star parameter (b2star2),

indicating ‘greater discrepancies in the popularity of events than expected in a random network’

[21], taking into account the density (edges) and actor two-star (b1star2) effects.

That ERG models containing only terms to model density and degree distributions (and specif-

ically not any terms to model dyadwise shared partner distributions or four-cycles) also fit the

four-cycle count well indicates that the observed number of four-cycles could have occurred simply

by chance [21]. Note that the same applies also to six-cycles. This is consistent with the results for

this network described by Opsahl [10], where the observed value of the two-mode global clustering

coefficient defined in that paper is not extreme in the distribution of that coefficient in random

networks.
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Figure 9. Cycle length distribution goodness-of-fit plots for the Southern Women network ERGM

(Table 5) Model 1 (top left), Model 2 (top right), Model 3 (bottom left), and Model 4 (bottom right).

Observed network statistics are plotted as red points (joined by red lines as a visual aid) with the statistics

of 100 simulated networks plotted as black box plots.

9. CONCLUSION
The existing parameters for modelling shared partners or four-cycles in ERGMs for two-mode

networks frequently lead to convergence problems, especially when parameters for both modes are

included in the model. A literature survey shows that the majority of published ERG models of two-

mode networks do not include these parameters. In addition, the majority of published models do

not include an assessment goodness-of-fit to four-cycles.

In this work, we defined new ERGM effects to explicitly model four-cycles, and in the case of two-

mode networks, four-cycle counts for the two modes separately. Simulation experiments show that

ERGMs using the new parameters are able to generate bipartite networks with smoothly varying

numbers of four-cycles, where the existing parametrisations cannot.

These new parameters come with both conceptual and computational costs. The conceptual cost

is having to use a more general dependence class in the dependence hierarchy, without an underlying

theoretical justification. The social circuit dependence assumption has theoretical justifications, as

does partial inclusion (PI1) for pendant-triangle configurations [80], but we are forced to use the

more general class D2 simply by the dependency induced by the new configuration, without any

theoretical basis.

It is notable that our attempt to solve the problems with near-degeneracy observed with the

existing K-CA and K-CA parameters with new parameters in the same dependence class (I1, ‘social

circuit’) failed due to these parameters being even more prone to near-degeneracy (Section 5).

These new parameters were motivated by the observation (Section 4) that the K-CA and K-CP
statistics include not just four-cycles, but also simple two-paths (k-two-paths with k = 1), and that

this could be a cause of near-degeneracy with these parameters. However, as shown in Section 5,

modifying the K-CA and K-CP parameters so that they only include four-cycles (and remain in the

same dependency class) did not solve the problem. The problem was only solved (Section 6) by

abandoning the dyadwise shared partner structure of the K-CA and K-CP statistics, and moving

instead to a node-oriented structure, counting the number of four-cycles in which each node is
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involved (and using ‘α-inside’ weighting). This has the consequence that these new statistics are no

longer in the I1 dependence class, but rather in the more general D2 class. Of course, just because we

were unable to solve the problems with the K-CA and K-CP parameters without creating a statistic in

a more general dependence class does not mean it is impossible to do so, and an interesting direction

for future work could be to either try to find a statistic for four-cycles that is not prone to near-

degeneracy and is in the I1 (or perhaps PI1, PI2, I2 or D1) dependence class, or to try to prove that

it is not possible.

The computational cost is incurred by having to traverse the two-neighbourhood of a dyad in

computing the change statistic, and even with precomputation of two-path counts [74], this can

be prohibitively slow (or require impractical amounts of memory) on dense and/or high four-cycle

count or very large networks, or those with very high degree nodes.

Another shortcoming is the counterintuitive and possibly confusing interpretation of the new pa-

rameters for bipartite networks (BipartiteFourCyclesNodePowerA and BipartiteFourCyclesNode-

PowerB; see Section 6.1). The new parameter for one-mode networks (FourCyclesNodePower)

is also applicable to two-mode networks but does not treat the modes separately, and is relatively

straightforward to interpret simply as a four-cycle closure parameter, so one solution is to use

this, but this could omit important differences in the modes in a two mode network. Even the

relatively straightforward gwdegree parameter used in statnet causes significant confusion due to the

counterintuitive meaning of its sign [78, 98–100]. Having to use such relatively complex statistics,

such as alternating, geometrically weighted, or the ‘α-outside’ or ‘α-inside’ [79] weightings often

solves the problem of near-degeneracy, but comes at the cost of making the statistics difficult to

interpret [38]. An alternative solution to the conceptual (and possibly computational) problem is

to use instead the LOLOG model [62, 63] or tapered ERGM [34, 38, 101] where a simple four-

cycle parameter is unlikely to cause near-degeneracy problems, much as these new models enable

a simple triangle parameter in one-mode networks where alternating or geometrically weighted

parameters are required in standard ERGMs [38, 62, 102]. LOLOG, however, does not (currently)

handle bipartite networks [62, 103], while tapered ERGM has the advantage of being implemented

in the statnet framework and can use any terms in the statnet ergm package.

One further shortcoming of the new parameters is that the weighting parameter α is fixed, and

not estimated as part of the model. A potential avenue of future work is to explore the possibility of

estimating this parameter in the context of a curved ERGM in the statnet ergm package.

One final issue is fitting cycles of length larger than four in bipartite networks. Of particular

importance are six-cycles, which have been suggested as the basis (rather than four-cycles) for

measuring closure in two-mode networks [10, 12, 13]. The dependence class required for the new

statistics described in this work also admits six-cycles as configurations, however we did not attempt

to fit models with six-cycles as a parameter. It seems likely that, like the simple four-cycles parameter,

attempting to do so would lead to problems with near-degeneracy, necessitating the creation of

another weighted configuration analogous to those defined here for four-cycles (which would then

be in another, even more general, dependence class).
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