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Introduction
Molecular interactions in biological systems are often represented as networks (Win-
terbach et  al. 2013). Some such networks are inherently undirected, such as protein–
protein interaction (PPI) networks (De Las Rivas and Fontanillo 2010). Others may be 
directed, such as gene regulatory networks, where nodes represent operons, and arcs 
(directed edges) represent transcriptional interactions between them. Much research 
with such biological networks has concerned “motifs”, small subgraphs which occur 
more frequently than would be expected by chance. Motifs have been considered the 
building blocks of complex networks (Alon 2007; Ciriello and Guerra 2008; Milo et al. 
2002; Shen-Orr et al. 2002). The biological significance of network motifs derives from 
their possible interpretation as signs of evolutionary events (Middendorf et al. 2005; Rice 
et al. 2005).
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Two simple examples of motifs in undirected networks are triangles (three-cycles) and 
squares (four-cycles) (Rice et al. 2005). Directed networks allow for a larger set of poten-
tially important motifs (Middendorf et al. 2005; Milo et al. 2002; Rice et al. 2005), which 
can be quite complicated, leading to problems of consistency in their definition (Kona-
gurthu and Lesk 2008b).

It is worth noting that such (three-node) motifs are an idea with a long history in 
social network analysis, where the counts of all sixteen possible three-node directed 
graphs (triads) are known as the triad census (Davis and Leinhardt 1967; Holland and 
Leinhardt 1970, 1976; Wasserman and Faust 1994). A systematic naming convention 
has been developed that is based on the number of mutual, asymmetric, and null (M, 
A, and N) dyads in the triad, followed by a letter to distinguish the orientation if it is 
not unique (Fig. 1). For example, the transitive triangle is designated 030T, which dis-
tinguishes it from the cyclic triad 030C. Although in common usage in social network 
research, and cited by Milo et  al. (2002) and Saul and Filkov (2007) in the context of 
biological networks, this naming convention is rarely used in discussions of motifs in 

003 012 102 021D

021U 021C 111D 111U

030T 030C 201 120D

120U 120C 210 300

Fig. 1  Triad census classes labeled with the MAN (mutual, asymmetric, null) dyad census naming 
convention. When the dyad census does not uniquely identify a triad, a letter designating “up”, “down”, 
“transitive”, or “cyclic” is appended
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the bioinformatics or biology literature. There are efficient algorithms for computing 
the triad census (Batagelj and Mrvar 2001; Moody 1998), implemented in widely used 
general purpose graph libraries such as igraph (Csárdi and Nepusz 2006) and NetworkX 
(Hagberg et  al. 2008). The triad census has recently been extended to colored triads, 
that is, distinguishing the nodes in the triads based on a categorical attribute assigned 
to them (Lienert et al. 2019). It has long been noted in the social networks literature that 
the dyad census constrains the triad census, and yet empirical social networks often still 
have counts for some triads greater than expected given those constraints (Faust 2010).

To determine if a motif is over-represented, the count of the motif in an observed net-
work is compared to the distribution of its counts in a set of simulated random networks 
(Ciriello and Guerra 2008) (it is also possible to determine the significance of motif over-
representation without simulation (Martorana et al. 2020; Picard et al. 2008)). This leads 
to the problem of choosing the appropriate random networks (null model), and some 
supposed motifs have been found to not be significantly over-represented, and occur 
with the observed frequencies simply due to topological properties of random networks 
(Konagurthu and Lesk 2008a) or correlations between motifs created by the randomiza-
tion process (Ginoza and Mugler 2010), although such correlations can also occur even 
with uniform sampling (Fodor et al. 2020).

Estimating motif (triad census) significance by comparing the triad census of an 
empirical network to that of ensembles of random graphs also has a long history, for 
example the conditional uniform graph (CUG) distribution (Anderson et al. 1999; Butts 
2008; Mayhew 1984), conditional on the dyad census (U|MAN) (Holland and Leinhardt 
1976), or on the degree distribution (Snijders 1991). A more modern variation on a simi-
lar idea is the dk-series (Mahadevan et al. 2006; Orsini et al. 2015), a sequence of nested 
network distributions of increasing complexity, fitting in turn density, degree distribu-
tion, degree homophily, average local clustering, and clustering by degree (Orsini et al. 
2015).

The recent work of Fodor et  al. (2020) shows that the assumptions of mainstream 
methods for motif identification, specifically normally distributed motif frequencies and 
independence of motifs, do not always hold, and that, as a consequence, such methods 
cannot always correctly estimate the statistical significance of motif over-representation.

Aside from such intrinsic statistical limitations, it may be the case that the apparent 
statistical over-representation of motifs has no evolutionary or functional significance 
(Ingram et al. 2006; Mazurie et al. 2005; Payne and Wagner 2015), and the choice of null 
model is a critical factor in this lack of evident relationship between over-representation 
and evolutionary preservation (Beber et al. 2012; Mazurie et al. 2005). Alternatively, the 
apparent lack of functional significance (Payne and Wagner 2015) may be due to too 
narrow a definition of “function” (Ahnert and Fink 2016). Recently, it has also been 
suggested that elementary motifs are a lower level of structure than that which is most 
functionally relevant in gene regulatory networks characterizing different physiological 
states (Lesk and Konagurthu 2021).

It might also be the case that particular motifs are over-represented, not because they 
are evolutionarily selected for function, but because of spatial clustering (Artzy-Randrup 
et al. 2004). For example, in the context of PPI networks, we might expect that interac-
tions would be over-represented between proteins that share a subcellular location, and 
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under-represented between those that do not, since proteins known to interact usually 
have the same subcellular locations (von Mering et al. 2002). Indeed PPI networks can 
be used as predictors of subcellular location (Kumar and Ranganathan 2010; Shin et al. 
2009).

There are many algorithms for motif discovery in complex networks; for recent 
reviews, see Jazayeri and Yang (2020), Patra and Mohapatra (2020) and Yu et al. (2020). 
In the present work we are considering only static, not temporal, networks. Although 
they differ in many details, especially regarding computational efficiency and scalability, 
these motif discovery algorithms work fundamentally in the manner described above. 
That is, they count occurrences of a motif in the observed network, and compare this 
to the distribution of the motif ’s frequency in an ensemble of randomized versions of 
the original network (typically preserving degree sequence). Therefore these conven-
tional methods all test the significance of one motif at a time, assuming independence 
of motifs, and are all potentially subject to the problems described by the recent work 
of Fodor et al. (2020), mentioned above. That is, that the assumptions of independence 
and normal distribution of motif frequencies may not hold, and that therefore these 
methods might not be able to correctly estimate the statistical significance of motif 
over-representation.

In this work we describe a different approach to determining motif significance in 
complex networks, which can potentially overcome these problems. Rather than com-
paring the observed frequency of a candidate motif to its frequency in a set of rand-
omized networks, we take a model-based approach. Specifically, we estimate parameters 
of a model (an exponential random graph model, abbreviated ERGM) of the observed 
network. These parameters correspond to substructures which resemble potential motifs 
of interest. This allows the significance of the candidate motifs to be tested simultane-
ously in a single model, in such a way that independence of the motifs is not assumed.

Once such a model is estimated, it can also be used to test for motif significance in the 
traditional way, using the ERGM to simulate an ensemble of random networks. Recently, 
this approach was used test for motifs (dyads, triads, and tetrads; that is, two, three, and 
four node motifs) in a collection of social (rather than biological) networks (Felmlee 
et  al. 2021). Using ERGM rather than degree-preserving randomization, “reduces the 
scope for misleading results by controlling for multiple, potential correlates in the same 
set of random models.” (Felmlee et al. 2021, p. 2).

We demonstrate the ERGM approach in biological networks (both undirected (PPI) 
and directed gene regulatory networks) using some recently developed ERGM estima-
tion methods (Borisenko et al. 2019; Byshkin et al. 2016, 2018; Stivala et al. 2020), which 
allow estimation of models for larger networks than was practical with earlier methods 
of ERGM parameter estimation.

The remainder of this article is organized as follows. First, we describe ERGMs, and 
review the literature on the application of ERGMs to biological networks. We then 
report the biological networks considered in this work, and the details of the ERGM 
configurations, estimation methods, and goodness-of-fit tests we used. Following that, 
we present and discuss new ERGM models of these networks, comparing the inferences 
as to motif significance with existing published results using conventional motif discov-
ery methods. In the next section, we detail the limitations of this application of ERGMs, 
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and indicate some potential future work. We conclude with a summary of the inferences 
drawn from the ERGM models of the networks considered.

Exponential random graph models
ERGMs are widely used in the social sciences, typically to model social networks (Amati 
et al. 2018; Koskinen 2020; Lusher et al. 2013; Robins et al. 2007a). Cimini et al. (2019) is 
a recent review of ERGMs for modeling real-world networks, from a statistical physics 
viewpoint.

An ERGM is a probability distribution with the form

where

•	 X = [Xij] is a 0–1 matrix of random tie variables,
•	 x is a realization of X,
•	 A is a “configuration”, a (small) set of nodes and a subset of ties between them,
•	 zA(x) is the network statistic for configuration A,
•	 θA is a model parameter corresponding to configuration A,
•	 κ(θ) is a normalizing constant to ensure a proper distribution.

Given an observed network x, we aim to find the parameter vector θ which maximizes 
the probability of x under the model. Then for each configuration A in the model, its cor-
responding parameter θA and its estimated standard error allow us to make inferences 
about the over- or under-representation of that configuration in the observed network. 
If θA is significantly different from zero, then if θA > 0 the configuration A is over-repre-
sented, or under-represented if θA < 0.

Note that a “configuration”, unlike a motif (in its most common usage) or the triad cen-
sus classes, is not an induced subgraph. That is, it does not include every edge in the 
original graph of which it is a subgraph: a configuration is any occurrence of the sub-
structure in question in the graph; it is defined only by its edges, not by its edges and 
non-edges. See Fig. 2 for an example based on one from Fodor et al. (2020, Fig. 5B).

(1)Pr(X = x) =
1

κ(θ)
exp

(

∑

A

θAzA(x)

)

Fig. 2  Motif examples. F, the transitive triangle (triad 030T) is not a special case of H, the out-star (triad 021D), 
when considered as motifs (or triad census classes): they are distinct induced subgraphs of three nodes. 
However, when considered as ERGM configurations, since H is a subgraph (but not an induced subgraph) 
of F (the transitive triangle is formed by “closing” the out-star with an additional arc), in their corresponding 
statistics both F and H are counted for an occurrence of F 
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ERGMs solve the problem of the need to correct for correlations between motif 
occurrences, and also other attributes such as subcellular location (functional and evo-
lutionary significance is another matter entirely). Given an observed network, model 
parameters can be estimated by maximum likelihood. Hence parameters corresponding 
to candidate motifs such as triangles can be estimated, and a positive significant param-
eter would indicate triangles occurring more frequently than by chance, given the other 
parameters in the model (which would include parameters to control for density and 
degree distribution, for example). ERGMs allow different structural configurations to be 
incorporated, as well as configurations based on node attributes (such as physico-chem-
ical properties, or spatial locality), and the significance of the configurations can then be 
assessed given all the other structural and other configurations included in the model.

ERGMs fulfill all of the desirable criteria for improved network models listed by de 
Silva and Stumpf (2005, p. 427). They take into account that networks are finite. Indeed, 
far from requiring very large networks to fit the requirements of mean-field theories, 
they are dependent on network size and do not scale consistently to infinity (Rolls et al. 
2013; Schweinberger et al. 2020; Shalizi and Rinaldo 2013)—a property that can be used 
to estimate population size from network samples (Rolls and Robins 2017). They can 
handle modular organization or community or block structure (Babkin et al. 2020; Fron-
czak et al. 2013; Gross et al. 2021; Schweinberger 2020; Schweinberger and Handcock 
2015; Schweinberger and Luna 2018; Wang et al. 2019), samples from larger networks 
(An 2016; Handcock and Gile 2010; Pattison et al. 2013; Stivala et al. 2016), and missing 
data (Koskinen et al. 2013; Robins et al. 2004). And finally, they are flexible at incorporat-
ing additional information such as nodal attributes, including dyadic attributes, such as 
distances between nodes. ERGMs have also been extended to handle valued networks 
(Desmarais and Cranmer 2012; Krivitsky 2012) and dynamic (time-varying) networks 
(Krivitsky and Handcock 2014), and to use graphlets (Pržulj 2007) as the ERGM configu-
rations (Yaveroǧlu et al. 2015).

Despite these potential advantages, however, ERGM parameter estimation is a com-
putationally intractable problem, and in practice it is generally necessary to use Markov 
chain Monte Carlo (MCMC) methods (Hunter et al. 2012). A variety of algorithms for 
ERGM model fitting (Hummel et al. 2012; Hunter and Handcock 2006; Krivitsky 2017; 
Snijders 2002) are implemented in widely used software packages such as statnet (Hand-
cock et al. 2008; Hunter et al. 2008; Morris et al. 2008) and PNet/MPNet (Wang et al. 
2009), and Bayesian methods are also available (Caimo and Friel 2011, 2014). These 
packages also implement the so-called “alternating” or “geometrically weighted” config-
urations (Robins et al. 2007b; Snijders et al. 2006), which alleviate problems with model 
“near-degeneracy”, where the model’s probability mass is concentrated in a very small 
region of possible networks, which can occur when only simple configurations, such as 
stars and triangles, are used (Hunter et al. 2012).

Until recently, the computational difficulty of ERGM parameter estimation has limited 
its application to biological networks, which are often larger than the social networks 
(traditionally measured by observations and surveys, rather than online social networks) 
for which the techniques were developed. Now, however, advances such as snowball 
sampling and conditional estimation (Pattison et al. 2013; Stivala et al. 2016), improved 
ERGM distribution samplers such as the “improved fixed density” (IFD) sampler 
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(Byshkin et  al. 2016), and new estimation algorithms (Hummel et  al. 2012), including 
the “Equilibrium Expectation” (EE) algorithm (Byshkin et al. 2018; Borisenko et al. 2019) 
and its implementation for large directed networks (Stivala et al. 2020), have reduced by 
orders of magnitude the time taken to estimate ERGM parameters.

Literature review of application of ERGMs to biological networks
ERGMs were first applied to biological networks by Saul and Filkov (2007), who esti-
mated model parameters for Escherichia coli (Salgado et al. 2001) and yeast regulatory 
networks, and a collection of metabolic networks. As well as introducing the use of 
ERGMs to the field of bioinformatics for analyzing biological networks, Saul and Filkov 
(2007) used ERGM models to build topological profiles which they showed to be capable 
of classifying organisms into biological and functional groups. With the algorithms and 
implementations available at the time, the larger networks could only be estimated by 
maximum pseudo-likelihood (Strauss and Ikeda 1990), an approximation which is now 
considered problematic (van Duijn et al. 2009; Hunter et al. 2012; Robins et al. 2007b) 
and useful mostly for obtaining initial parameter estimates for a more accurate (but also 
more computationally expensive) method (Hummel et al. 2012; Hunter and Handcock 
2006; Krivitsky 2017). Further, all the networks in Saul and Filkov (2007) were treated 
as undirected, thereby losing important directional information (and not, for example, 
being able to distinguish between cyclic and transitive triads) in regulatory networks. 
The E. coli regulatory network, treated as undirected, was also used as an example appli-
cation of the “stepping” algorithm for ERGM estimation by Hummel et al. (2012).

Exponential random graph models for similar E. coli regulatory networks were 
described by Begum et  al. (2014), leaving the networks directed rather than treating 
them as undirected. These models were very simple, however, including only Arc and In-
star terms, and therefore model degree distribution, but not triangular motifs.

Bayesian estimation of an ERGM model of a human PPI network with 401 proteins 
was described by Bulashevska et al. (2010). This model used only very basic structural 
features (not including any triangular structures, for example), but made use of nodal 
attributes, specifically a binary variable indicating if the protein is disordered. This 
ERGM was not used to analyze network motifs, but rather the relationship between dis-
ordered proteins and their “sociality”, a measure of their importance in the PPI network, 
finding that intrinsically disordered proteins tend to be more “social” (Bulashevska et al. 
2010). In their Conclusions, Bulashevska et al. (2010) suggest that “The ERGM model-
ling of networks offers a natural way of assessing importance of the network motifs” 
(Bulashevska et al. 2010, p. 13).

Similar techniques, that is, Bayesian estimation of ERGMs with only very simple 
structural terms, have also been used with gene–gene relationship networks to model 
mechanisms of gene dysregulation (Azad et al. 2017). These models were used to infer 
potential aberrant gene pairs, and suggested a novel pattern of aberrant signaling (Azad 
et al. 2017).

A mixture ERGM was introduced by Wang et al. (2019) and applied to a yeast gene 
interaction network with 424 genes (Schuldiner et al. 2005; Wang et al. 2019). The model 
included geometrically weighted in-degree and out-degree terms, but not any triangular 



Page 8 of 27Stivala and Lomi ﻿Applied Network Science            (2021) 6:91 

terms; the interest is rather in the clusters it finds, which may be used to predict func-
tion (Wang et al. 2019).

An ERGM incorporating a directed form of the degree-corrected stochastic block-
model (Karrer and Newman 2011) was introduced by Gross et  al. (2021), and applied 
to the connectome of the C.  elegans worm (279 nodes representing neurons), and an 
A.  thaliana PPI network (4344 nodes representing proteins). These models assume 
dyadic independence, and hence triangular configurations could not be incorporated. 
The advantage of the mixture ERGM (Wang et al. 2019) or stochastic blockmodel ERGM 
generalizations ( β-SBM and p1-SBM (Gross et al. 2021)) is that they can capture hetero-
geneity in clusters found in the network, but we do not address cluster or community 
structure here.

ERGMs have been applied to neural networks with 90 nodes, representing brain 
regions (Simpson et al. 2011, 2012), finding that an ERGM approach outperforms con-
ventional approaches for constructing group-based representative brain networks 
(Simpson et  al. 2012). Bayesian ERGM techniques, with 96 nodes representing brain 
regions, have been used to model brain networks over the human lifespan (Sinke et al. 
2016). Recently, Bayesian ERGMs, extended to multiple networks, were used to compare 
functional connectivity structure across groups of individuals (Lehmann et al. 2021).

ERGMs have also been used to model human brain networks inferred from elec-
troencephalographic (EEG) signals; these networks have 56 (the number of EEG sen-
sors) nodes (Obando and De Vico Fallani 2017). These models showed that clustering 
and node centrality (as reflected by over-representation of triangles and stars) better 
explained global properties of the brain networks than other graph metrics, supporting 
the view that segregated modules exchange information via hubs.

An enhanced version of the generalized (or valued) ERGM (Desmarais and Cranmer 
2012) was used to model the human Default Mode Network (DMN) with 20 nodes, rep-
resenting brain regions (Stillman et al. 2017). This model showed that the DMN appears 
to be organized in a “segregated highway” structure, that is, with fewer hubs and more 
triadic closure than expected, in contrast to “small world” structure of the whole-brain 
network (Stillman et al. 2017). This work is an example of an ERGM that incorporates 
spatial distances, in the form of three-dimensional Euclidean distances between nodes.

A Bayesian ERGM has been used to model transient structure in intrinsically dis-
ordered proteins, providing a means for identifying transient structures that differ 
in favorability across variants (Grazioli et  al. 2019a). A specific family of ERGMs has 
been used to model amyloid fibril topologies, leading to the construction of a systemic 
nomenclature that can classify all known amyloid fibril structures, and a simulation 
technique that can explore the kinetics of fibril self-assembly (Grazioli et al. 2019b).

Simple ERGMs for undirected networks (A.  thaliana, yeast, human, and C.  ele-
gans PPI networks, and undirected versions of E. coli regulatory and Drosophila optic 
medulla networks) were estimated in Byshkin et al. (2018, S.I.), demonstrating that the 
EE algorithm could be used to estimate in minutes a model that takes many hours or 
is practically impossible with earlier methods. In addition, a more complex model of 
the A.  thaliana PPI network was estimated, showing not just the over-representation 
of the triangle motif, but also the tendency for plant-specific proteins to interact prefer-
entially with each other, and for kinases to interact preferentially with phosphorylated 
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proteins (Byshkin et al. 2018). However that work dealt only with undirected networks. 
An implementation of the EE algorithm for directed networks was described in Stivala 
et al. (2020), but no biological networks were considered in that work.

Methods
Network data

We obtained a yeast PPI network (von Mering et al. 2002) from the igraph (Csárdi and 
Nepusz 2006) Nexus network repository (this is no longer available, we used the network 
downloaded on 10 November 2016). The yeast PPI network has the proteins annotated 
with one of 12 functional categories (Mewes et al. 2002; Ruepp et al. 2004) (or “unchar-
acterized”), as described in the Supplementary Information of von Mering et al. (2002).

We obtained a human PPI network from the HIPPIE database (Alanis-Lobato et  al. 
2016; Schaefer et  al. 2012, 2013; Suratanee et  al. 2014), version 2.2, downloaded from 
http://​cbdm.​uni-​mainz.​de/​hippie/ (accessed 12 June 2021). Edges in this network are 
labeled with a confidence score between zero and one. We built a binary “high confi-
dence” network by selecting edges where the score is ≥ 0.70 , the third quartile of the 
score distribution.

To annotate nodes in the human PPI network with their subcellular location using 
terms in the Gene Ontology (GO) (Ashburner et al. 2000), we used the Protein ANalysis 
THrough Evolutionary Relationships (PANTHER) database (Mi et al. 2019, 2021). We 
used the PANTHER database version 16.0 downloaded from http://​data.​panth​erdb.​org/​
ftp/​seque​nce_​class​ifica​tions/​curre​nt_​relea​se/​PANTH​ER_​Seque​nce_​Class​ifica​tion_​files/​
PTHR16.​0_​human (accessed 21 June 2021). We used the R package GOxploreR (Man-
jang et  al. 2020, 2021) to rank the GO terms for subcellular component in the PAN-
THER database, and annotated each node (representing a protein) in the network with 
the highest ranking term for that protein. This results in a cellular component GO term 
for 6131 of the 11,517 nodes (53%) in the human PPI network. The cellular component 
GO terms are treated as a categorical attribute, of which there are 271 unique values in 
the data. The nodes with no cellular component GO term assigned are given an “NA” 
category, which, when used in the “Match” statistic in ERGM modeling, does not match 
any category (including the NA category itself ).

The previously mentioned E. coli regulatory network (Salgado et  al. 2001; Shen-Orr 
et al. 2002) was obtained via the statnet package (Handcock et al. 2008, 2016). Following 
Hummel et  al. (2012), we removed the loops (self-edges) representing self-regulation, 
and considered self-regulation instead in a simplistic way by a binary node attribute des-
ignated “self” which is true when a self-loop was present and false otherwise. In some 
models, we use the original version of this network with self-edges retained, and when 
this is done it is noted in the results. We also obtained a Saccharomyces cerevisiae (yeast) 
regulatory network (Costanzo et al. 2001; Milo et al. 2002) (http://​www.​weizm​ann.​ac.​il/​
mcb/​UriAl​on/​downl​oad/​colle​ction-​compl​ex-​netwo​rks; accessed 29 April 2019) and pro-
cessed it in the same way.

For all networks, we removed multiple edges and, unless noted otherwise, self-loops, 
where these are present.

Summary statistics of the networks are in Table 1 and the degree distributions of the 
networks are shown in Fig. 3. In this figure, α is the exponent in the discrete power law 

http://cbdm.uni-mainz.de/hippie/
http://data.pantherdb.org/ftp/sequence_classifications/current_release/PANTHER_Sequence_Classification_files/PTHR16.0_human
http://data.pantherdb.org/ftp/sequence_classifications/current_release/PANTHER_Sequence_Classification_files/PTHR16.0_human
http://data.pantherdb.org/ftp/sequence_classifications/current_release/PANTHER_Sequence_Classification_files/PTHR16.0_human
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
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distribution Pr(X = x) = Cx−α (where C is a normalization constant), and µ and σ are 
the parameters (respectively, mean and standard deviation of log(x) ) of the discrete log-
normal distribution. Power law and log-normal distributions were fitted using the meth-
ods of Clauset et al. (2009) implemented in the poweRlaw package (Gillespie 2015).

ERGM configurations

The ERGM parameters used in the models for undirected networks are shown in Table 2, 
and those for directed networks in Table 3. Detailed descriptions of these parameters 
and their corresponding statistics can be found in Lusher et  al. (2013); Robins et  al. 
(2007a, 2007b, 2009); Snijders et al. (2006); Stivala et al. (2020), but two of the important 
ones used in this work are shown in Fig. 4.

The “alternating” statistics (Lusher et al. 2013; Robins et al. 2007b; Snijders et al. 2006) 
such as alternating k-stars involve sums of counts of configurations with alternating 
signs and a decay factor � , and, except where otherwise specified, we set � = 2 in accord-
ance with common ERGM modeling practice.

Table 1  Summary statistics for the biological networks

“Clustering coefficient” is the global clustering coefficient (transitivity)

Network Directed Nodes Edges Density Clustering 
coefficient

Yeast PPI No 2617 11855 0.00346 0.46862

Human PPI (HIPPIE) No 11517 47184 0.00071 0.03765

Alon E. coli regulatory Yes 423 519 0.00291 0.02382

Alon yeast regulatory Yes 688 1079 0.00228 0.01625
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Fig. 3  Degree distributions of the networks. Power law and log-normal distributions fitted to the CDF 
for degree distributions of the networks (in- and out-degree for directed networks, degree for undirected 
networks). All distributions apart from the E. coli in-degree distribution (for which a log-normal distribution 
could not be fitted), and the Human PPI (HIPPIE) degree distribution (which is not consistent with a power 
law distribution, p < 0.01 ), are consistent with both power law and log-normal distributions
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Table 2  Parameters for undirected networks

Effect Description

Edge Baseline density

A2P Alternating k-two-paths. Used as a “control” for alternating k-triangles

AS Alternating k-stars. A positive parameter value indicates centralization based on high-degree nodes

AT Alternating k-triangles. A positive parameter value indicates network closure (triangles)

Match c Categorical matching on categorical attribute c. A positive parameter value indicates an edge prefer-
entially forming between nodes with the same value of the categorical attribute (known as “homoph-
ily” in social network research)

Table 3  Parameters for directed networks

Effect Description

Arc Baseline density

Sink A positive parameter value indicates a tendency for nodes with incoming but no outgoing arcs

Source A positive parameter value indicates a tendency for nodes with outgoing but no incoming arcs

Reciprocity A positive parameter value indicates a tendency for arcs to be reciprocated (a cycle of length 2)

AltInStars Alternating k-in-stars. A positive parameter value indicates centralization based on high in-
degree nodes

AltOutStars Alternating k-out-stars. A positive parameter value indicates centralization based on high out-
degree nodes

AltTwoPathsT Multiple 2-paths. A positive parameter value indicates a tendency for directed paths of length 2. 
Used as a “control” for AltKTrianglesT, the parameter for triangles formed by closing these 2-paths

AltKTrianglesT Path closure or transitive closure. A positive parameter value indicates a tendency for open 
directed two-paths to be closed transitively. This is an alternating statistic version of the “feed-
forward loop” motif

AltKTrianglesC Cyclic closure. A positive parameter value indicates a tendency for directed cycles of length 3 in 
the network, representing non-hierarchical network closure. An alternating statistic version of 
the “three-node feedback loop” motif

Sender a Sender on binary attribute a. A positive parameter value indicates that nodes with the attribute 
are more likely to have an incident arc directed from them

Receiver a Receiver on binary attribute a. A positive parameter value indicates that nodes with the attribute 
are more likely to have an incident arc directed to them

Interaction a Interaction on binary attribute a. A positive parameter value indicates that two nodes which 
both have the attribute are more likely to have an arc directly connecting them

Matching c Matching on categorical attribute c. A positive parameter value indicates that two nodes which 
have the same value of the attribute are more likely to have an arc directly connecting them

Loop Self-edge. A positive parameter value indicates a tendency for self-edges (loops)

Fig. 4  Alternating two-paths and alternating transitive triangles ERGM configurations for directed networks. 
Unlike motifs, ERGM configurations are not induced subgraphs, so it is normal (and often required) for one to 
be a subgraph of another. So AltTwoPathsT and AltKTrianglesT are frequently included in a model together, 
with AltKTrianglesT consisting of the AltTwoPathsT configuration “closed” by the addition of an arc
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ERGM parameter estimation

ERGM parameters for undirected networks were estimated using the EE algorithm 
(Byshkin et al. 2018) with the IFD sampler (Byshkin et al. 2016) implemented for undi-
rected networks in the Estimnet software as described in Byshkin et al. (2018), with 20 
estimations (run in parallel). ERGM parameters for directed networks were estimated 
using the simplified EE algorithm (Borisenko et al. 2019; Byshkin et al. 2018) with IFD 
sampler implemented for directed networks in the EstimNetDirected software (Stivala 
et al. 2020), with 64 estimations (run in parallel).

The Alon E.  coli network does not contain any reciprocated arcs (directed loops of 
length two), and so estimation is made conditional on this by preventing the creation of 
reciprocated arcs in the MCMC procedure.

Convergence and goodness‑of‑fit tests

Convergence was tested as described in Byshkin et  al. (2018), Stivala et  al. (2020), by 
requiring the absolute value of each parameter’s t-ratio to be no greater than 0.3, and by 
visual inspection of the parameter and statistic trace plots. For the directed networks 
estimated with EstimNetDirected, an additional heuristic convergence test was used, as 
described in Stivala et  al. (2020). Observed graph statistics were plotted on the same 
plots as the distributions of those statistics in the networks simulated in the EE algo-
rithm MCMC process, to check that they do not diverge. The statistics used are the same 
as those of the actual goodness-of-fit test described below, but note that this test is only 
for estimation convergence, not goodness-of-fit (Stivala et al. 2020).

For the directed networks estimated with EstimNetDirected, a simulation-based good-
ness of fit procedure was used, similar to that used in statnet (Hunter et al. 2008). A set 
of networks was simulated from the estimated model (using the SimulateERGM pro-
gram in the EstimNetDirected software), and the distribution of certain graph statistics 
compared with those of the observed network by plotting the observed network values 
on the same plots as the distribution of simulated values. The statistics used were the in- 
and out-degree distributions, reciprocity, giant component size, mean local and global 
clustering coefficients, triad census, geodesic distance (shortest path length) distribu-
tion, and edge-wise and dyad-wise shared partners distributions.

Results and discussion
Table 4 shows the basic structural model for the yeast PPI network (Model 1), a model 
with the alternating k-two-paths (A2P) parameter added (Model 2), as well as a model 
(Model 3) incorporating a parameter for the propensity of interactions to occur between 
proteins in the same functional category (class). Model 1 reproduces a model of this net-
work in a previous work (Byshkin et al. 2018, Table S3); Models 2 and 3 are new.

Each of these model estimations took approximately 7 minutes total elapsed time on 
cluster nodes with Intel Xeon E5-2650 v3 2.30GHz processors using 20 parallel tasks.

We expect that proteins of the same functional category should preferentially interact 
with each other (von Mering et al. 2002), and this is confirmed by the significant positive 
parameter estimated for the “Match class” effect. The alternating k-triangle (AT) param-
eter is positive and significant in all models, showing an over-representation of triangles 
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(which we might expect given the very high value of the clustering coefficient for this 
network, Table 1), even in models also including parameters for two-paths and preferen-
tial interaction of proteins in the same class.

Table 5 shows a basic structural model for the human PPI high confidence network 
(Model 1), and a model with a term to control for subellular location by categorical 
matching on the cellular component GO term (Model 2).

Estimation of Model 1 took approximately 64 minutes elapsed time, and Model 2 
approximately 73 minutes, on cluster nodes with Intel Xeon E5-2650 v3 2.30GHz pro-
cessors using 20 parallel tasks.

As discussed in the Introduction, we expect that interactions would be over-repre-
sented between proteins that share a subcellular location, and this is confirmed by a 
statistically significant positive parameter estimate for categorical matching on cellular 
component (Model 2 in Table 5). The alternating k-triangle (AT) parameter is positive 
and statistically significant in both models. This indicates an over-representation of tri-
angles, even when controlling for subcellular location (Model 2).

We estimated four different models of the Alon E. coli regulatory network (Table 6). In 
Models 1 and 2, following Hummel et al. (2012), we modeled self-regulation by using a 
nodal covariate “self” which is true exactly when the node had a self-edge (loop) in the 
original network. These ERGM models are new, in that previous work with ERGMs on 
these networks either treated them as undirected (Hummel et al. 2012; Saul and Filkov 
2007), thereby ignoring the inherently directed nature of such a regulatory network; or, 
in the case where the network was left as directed, included only Arc and alternating 
k-in-stars terms, as the estimation methods used at the time could not find converged 
models when other terms, such as triangles, were included (Begum et al. 2014).

Table 4  Parameter estimates with 95% confidence interval for the yeast PPI network, from the EE 
algorithm

Parameter estimates that are statistically significant are shown in bold

Effect Model 1 Model 2 Model 3

Edge −7.758
(−7.806,−7.709)

−10.667
(−10.685,−10.650)

−9.282
(−9.302,−9.262)

AS −0.048
(−0.103,0.007)

1.077
(1.013,1.140)

0.604
(0.550,0.659)

A2P – −0.087
(−0.090,−0.084)

−0.059
(−0.062,−0.056)

AT 1.857
(1.807,1.907)

2.511
(2.474,2.548)

2.432
(2.396,2.467)

Match class – – 0.358
(0.315,0.402)

Table 5  Parameter estimates with 95% confidence interval for the human PPI (HIPPIE high 
confidence) network, from the EE algorithm

Parameter estimates that are statistically significant are shown in bold

Effect Model 1 Model 2

Edge −12.500
(−12.550,−12.450)

−12.450
(−12.498,−12.402)

AS 1.240
(1.222,1.258)

1.226
(1.208,1.245)

A2P −0.001
(−0.001,−0.001)

−0.001
(−0.001,−0.001)

AT 1.701
(1.692,1.711)

1.690
(1.680,1.699)

Match cellular component – 0.465
(0.431,0.498)
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Each of these model estimations took approximately three minutes total elapsed 
time on cluster nodes with Intel Xeon E5-2650 v3 2.30GHz processors using 64 paral-
lel tasks.

In these models, the Sink and Source parameters are used to control, respectively, 
for the presence of genes that do not regulate any genes (have out-degree zero) and 
genes that are not regulated by any gene (have in-degree zero). The alternating k-in-
stars (AltInStars) parameter is positive and significant in all models except Model 3, 
indicating significant skewness of the in-degree distribution, that is, the presence of 
“hubs” with higher in-degree than other nodes. There is no significant effect for (or 
against) such skewness of the out-degree distribution (see Figs. 3 and 5).

Table 6  Parameter estimates with 95% confidence interval for the Alon E. coli regulatory network

Parameter estimates that are statistically significant are shown in bold. In Models 3 and 4, self-edges (loops) are retained in 
the network and allowed in the model

Effect Model 1 Model 2 Model 3 Model 4

Arc −8.208
(−8.368,−8.047)

−7.670
(−7.830,−7.509)

−5.342
(−5.535,−5.149)

−8.500
(−8.664,−8.337)

Sink 3.295
(−0.240,6.830)

2.877
(0.306,5.448)

−0.627
(−5.584,4.330)

4.075
(−1.512,9.662)

Source 1.238
(−1.770,4.247)

1.546
(−1.063,4.156)

1.056
(−3.084,5.195)

2.434
(−1.683,6.551)

AltInStars 2.587
(0.943,4.232)

2.299
(0.555,4.044)

1.614
(−0.163,3.392)

2.714
(0.630,4.798)

AltOutStars −1.001
(−2.363,0.362)

−0.848
(−1.885,0.189)

−1.135
(−3.987,1.717)

−0.517
(−2.300,1.266)

AltTwoPathsT −0.170
(−0.638,0.297)

−0.165
(−0.603,0.272)

−0.592
(−1.376,0.192)

−0.250
(−0.767,0.267)

AltKTrianglesT 2.885
(0.798,4.972)

2.830
(1.025,4.636)

3.139
(0.722,5.555)

3.076
(0.548,5.604)

Matching self – −0.451
(−1.181,0.280)

– –

Loop – – – 8.103
(1.949,14.256)

Fig. 5  Alon E. coli regulatory network. (a) Node size is proportional to in-degree. (b) Node size is proportional 
to out-degree. Self-regulating operons are depicted as filled (red) circles. In (a) there appears to be a small 
set of high in-degree nodes and a much larger set of smaller in-degree nodes, while in (b) the out-degree of 
the nodes appears to be much more evenly distributed. The hypothesis we might make from (a), that there 
is centralization on in-degree, is confirmed by the ERGM results. This same model finds no support for the 
hypothesis we might make from (b), that there is a tendency against centralization on out-degree
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The only other parameter that is consistently significant (and positive) is path closure 
(AltKTrianglesT), which we can interpret as a significant tendency for the “feed-forward 
loop” to be over-represented, consistent with the results in Milo et al. (2002).

A goodness-of-fit plot for Model 1 (Table  6) is shown in Additional file  1:  Fig.  S1a, 
showing a good fit for the model. A goodness-of-fit plot for the triad census (Fig.  6a) 
shows that the model reproduces the triad census well, and specifically triad 030T, the 
transitive triad (three node feed-forward loop), giving additional confidence that the 
positive and statistically significant AltKTrianglesT parameter is evidence for over-rep-
resentation of this motif, given the other parameters in the model.

Note that this E. coli regulatory network does not contain any instances of the three-
cycle, or “three-node feedback loop” (Milo et al. 2002). Indeed the Alon E. coli network 
does not contain any loops greater than size one (Shen-Orr et al. 2002), and so the cyclic 
closure parameter (AltKTrianglesC) is not included in the models.

In Models 3 and 4 (Table 6), unlike the other models, self-edges (loops) are retained in 
the network, and self-edges are allowed in the modeling process, allowing the formation 
of loops to be modeled jointly with the other structural features in the model.1 In Model 
4, the new parameter “Loop” is introduced, for which the corresponding statistic is the 
count of self-edges in the network. This parameter is statistically significant and positive, 
indicating that self-edges are over-represented, given the other effects included in the 
model. Goodness-of-fit plots for Models 3 and 4 (Table 6) are shown in Additional file 1: 
Fig. S4, showing that when the Loop parameter is not included in the model (Model 3 in 
Table 6), there is a poor fit for the number of loops (Additional file 1: Fig. S4a). However, 
when the Loop parameter is included (Model 4 in Table 6), there is a good fit for the 
number of loops (Additional file 1: Fig. S4b).

We found that it is also possible to estimate similar models of this relatively small net-
work using the most recent version of the statnet ergm package (Handcock et al. 2021; 
Krivitsky et al. 2021), with the “stepping” algorithm (Hummel et al. 2012). These mod-
els are shown in Additional file 1: Table S1, and the goodness-of-fit plots in Additional 
file  1:  Figs.  S6, S7. The results are consistent with those in Table  6. Specifically, there 
is a significant positive estimate for geometrically weighted edge-wise shared partners 
(GWESP, equivalent to AltKTrianglesT), and a significant negative estimate for geomet-
rically weighted in-degree, indicating centralization in the in-degree distribution.2 The 
statnet model finds a significant tendency against centralization on out-degree, while the 
models in Table 6 did not have a significant estimate for the corresponding parameter 
(AltOutStars). Similarly the statnet model (Model 2 in Additional file 1: Table S1) finds 
a significant negative parameter estimate for Matching on the “self-regulating” attribute, 
while no significant effect is found in Model 2 in Table 6. The statnet ergm package does 
not allow for the modeling of self-edges, however (Hummel et al. 2012).

Table  7 shows ERGM parameter estimates for the Alon yeast regulatory network. 
Each of these model estimations took approximately three minutes total elapsed time 

1  Modeling self-edges in this way was suggested by an anonynous reviewer, on the grounds that a node with a self-edge 
is a (very simple) motif.
2  Note that a negative estimate of the geometrically weighted degree parameter in statnet has the same interpretation as 
a positive estimate for the alternating k-stars parameter as used here. This frequently leads to confusion (Levy 2016; Levy 
et al. 2016).
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on cluster nodes with Intel Xeon E5-2650 v3 2.30GHz processors using 64 parallel tasks. 
These ERGM models are also new; previously published ERGMs for similar networks 
having treated them as undirected (Saul and Filkov 2007).

Fig. 6  Goodness-of-fit plots for the triad census of (a) the Alon E. coli regulatory network, Model 1 (Table 6), 
and (b) the Alon yeast regulatory network, Model 1 (Table 7). The observed triad counts are plotted in red 
with the triad counts of 100 simulated networks plotted as black boxplots. Because the triad counts (y-axis) 
are on a log scale, values of zero are omitted (observed zero counts shown as a red point on the bottom of 
the graph). In (a), for triad census class 030C (cyclic triad), the “box plot” consisting of a single median line 
for the simulated count represents a single (out of 100 simulations) occurrence of a nonzero count (of 1) for 
030C
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In Model 1 (Table 7), estimation is conditional on no reciprocated arcs, just as was 
done for the E.  coli regulatory network. However in this yeast regulatory network, 
there is actually a single reciprocated arc (two-cycle) in the data, and hence the fit of 
the model on statistics involving reciprocated arcs is poor. This is apparent, for exam-
ple, in the poor fit for triad census class 102 (triad with only a mutual arc) in Fig. 6b, 
or for the reciprocity statistic in the goodness-of-fit plot (Additional file 1: Fig. S1b). 
The fit for other statistics, and in particular the degree and shared partner distri-
butions, is acceptable (with the exception of poor fit on the giant component size). 
Importantly, the fit on the triad census class 030T (transitive triad) is good (Fig. 6b).

In order to better model reciprocity, a model (Model 2 in Table  7) was estimated 
without being conditional on there being no reciprocated arcs, but without a reci-
procity term in the model. This model also has adequate goodness-of-fit, but this 
time including good fit on the reciprocity statistic (Additional file  1: Fig.  S2a). It 
does, however, for some triads involving reciprocated arcs (120U for example), gen-
erate significantly more such triads than are observed in the data (Additional file 1: 
Fig. S2b). Therefore, a third model (Model 3 in Table 7) was estimated, including the 
Reciprocity parameter. However, probably due to the fact that the data contains only 
a single reciprocated arc, this model has a very large estimated standard error for the 
Reciprocity parameter. Further, it exhibits poor convergence with respect to the Reci-
procity statistic, with a t-ratio greater than the maximum value of 0.3 we consider 
acceptable, since the data contains exactly one reciprocated arc, yet the model most 
frequently generates networks with none.

Model 1 and Model 2, therefore, are preferable. Nevertheless, in all three models, the 
sign and significance of estimated parameters (except Reciprocity) are the same. There 
is a positive and significant parameter for alternating k-out-stars (AltOutStars), indicat-
ing the presence of “hubs” with higher out-degree than other nodes. This is as we might 
expect from Fig. 3 and previous research (Balaji et al. 2006; Guelzim et al. 2002; Mon-
teiro et al. 2020; Ouma et al. 2018), and contrasts with the E. coli regulatory network, 
which has in-degree hubs but not out-degree hubs.

Also in all three models, there is a positive and significant parameter estimate for tran-
sitive closure (AltKTrianglesT). Given this estimate, and the good fit for the transitive 
closure motif 030T (Fig. 6b) we can again interpret this as a significant over-representa-
tion of this motif (“feed-forward loop”), consistent with the results of Milo et al. (2002).

Table 7  Parameter estimates with 95% confidence intervals for the Alon yeast regulatory network

Parameter estimates that are statistically significant are shown in bold. In Model 1 only, estimation is conditional on no 
reciprocated arcs, even though there is a single reciprocated arc in the data. Model 3 is included for illustration, even though 
it shows poor convergence with respect to the Reciprocity parameter (t-ratio magnitude is greater than 0.3)

Effect Model 1 Model 2 Model 3

Arc −7.489
(−7.665,−7.313)

−7.490
(−7.662,−7.318)

−7.490
(−7.667,−7.313)

Reciprocity — — −6.114
(−15.535,3.307)

AltInStars −0.463
(−1.504,0.577)

−0.435
(−1.451,0.581)

−0.452
(−1.472,0.568)

AltOutStars ( � = 4.5) 1.008
(0.756,1.261)

1.006
(0.757,1.256)

1.008
(0.752,1.264)

AltTwoPathsT ( � = 3) −0.332
(−0.739,0.076)

−0.298
(−0.670,0.074)

−0.315
(−0.684,0.054)

AltKTrianglesT ( � = 3) 2.297
(0.484,4.111)

1.842
(0.043,3.640)

2.121
(0.479,3.763)
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In all three models in Table  7, the decay parameter � for the “alternating” statistics 
has been set to a value other than the default � = 2 for alternating k-out-stars (AltOut-
Stars), multiple two-paths (AltTwoPathsT), and transitive closure (AltKTrianglesT). 
This is because models initially estimated with the default � = 2 value (Additional file 1: 
Table S2) showed poor goodness-of-fit on the out-degree distribution (Additional file 1: 
Fig. S3a) and triad census class 030T (Additional file 1: Fig. S3b). Therefore, new models 
were estimated with a higher value of � for the alternating k-out-star parameter to assist 
with modeling the highly skewed out-degree distribution (Koskinen and Daraganova 
2013), and also a higher value of � for AltTwoPathsT and AltKTrianglesT (the same 
value of � for both) to aid model convergence and fit for transitivity (Snijders et al. 2006).

As with the E.  coli network, we also estimated a model of the yeast regulatory net-
work, in which self-edges are retained, and allowing self-edges (loops) in the model. This 
network (even leaving aside the presence of self-edges) is, however, not identical to the 
network used for the models shown in Table 7, having two additional nodes. Its graph 
summary statistics, are, however the same (to the precision shown) as those of the ver-
sion shown in Table 1, other than it having 690 rather than 688 nodes. Since the network 
modeled is a slightly different network than that used for the models shown in Table 7, 
these models are presented separately, in Additional file 1: Table S3. The results are con-
sistent with those in Table 7, with statistically significant positive parameter estimates 
for AltOutStars and AltKTrianglesT. The estimate for the Loop parameter is not sta-
tistically significant, however. Goodness-of-fit plots for the models in Additional file 1: 
Table S3 are shown in Additional file 1: Fig. S5. These figures show that the model which 
allows self-edges, but does not include the Loop parameter (Model 1 in Additional file 1: 
Table S3) does not fit the number of loops well, while the model that includes the Loop 
parameter (Model 2 in Additional file 1: Table S3) does fit the number of loops well.

The cyclic triangle structure has been suggested as an “anti-motif” (i.e. occurs less fre-
quently than expected), but in some cases its apparent under-representation has been 
shown to be an expected consequence of other topological properties of biological net-
works (Konagurthu and Lesk 2008a). This closed-loop structure, also known as a “mul-
ticomponent loop”, can provide feedback control and potentially produce systems that 
can switch between two states (Ferrell 2002; Lee et al. 2002). In the examples used here, 
there were so few (or no) occurrences of this motif, that models including the corre-
sponding parameter (in the form of the AltKTrianglesC parameter) would not converge. 
Yet the networks simulated from these models also contain no (or very few) occurrences 
of this candidate anti-motif. This is consistent with the lack of cyclic triangles not being 
due to cyclic triangles being an anti-motif as such, but rather as a consequence of the 
other topological features of the network, and specifically in these examples, the features 
described by the parameters included in the models. This is not a new finding, it having 
previously been noted that the lack of three-node feedback loops in the E. coli regulatory 
network (Lee et al. 2002; Shen-Orr et al. 2002) is reproduced in randomized networks 
(Shen-Orr et al. 2002).

The biological significance of the feed-forward loop (transitive triangle) is suggested 
to be that, by providing two pathways to affect the output, one direct, and one through 
an intermediate link, it can act as a logical “AND” gate, and filter out transient activa-
tion signals (Alon 2007; Lesk and Konagurthu 2021; Mangan and Alon 2003; Shen-Orr 
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et al. 2002). Whether or not this is indeed the biological function of the feed-forward 
loop (Mazurie et  al. 2005), this motif is found to be significantly over-represented in 
the transcriptional regulatory networks of several organisms (Alon 2007), including the 
yeast and E. coli networks studied here, and the feed-forward loop has been described 
as “highly favored during the evolution of transcriptional regulatory networks in yeast” 
(Lee et al. 2002, p. 801).

More recently, there has been interest in trying to understand the function of motifs 
by examining higher levels of structure. Gorochowski et al. (2018) examine the cluster-
ing of motifs, including the feed-forward loop, and find that a measure of motif cluster-
ing diversity can predict functionally important nodes in the E. coli metabolic network. 
Lesk and Konagurthu (2021) describes how the local structure of the yeast regulatory 
network is reconfigured in different physiological states.

So far we have only discussed results for three-node motifs, such as the feed-forward 
loop. We can test for the over-representation of other motifs, without including param-
eters for them in the model, by using the ERGM as the null model against which to com-
pare the count of the motif in the observed network. This was the technique used by 
Felmlee et al. (2021), for example.

Figure 7 shows the bi-fan and bi-parallel motifs, as defined by Milo et al. (2002), their 
counts in the E. coli and yeast regulatory networks, and their distribution in ERGM 
models of these networks. The motifs were counted with the NetMODE software (Li 
et  al. 2012). Note that NetMODE was used only to count the motifs, not to simulate 
any networks, which are simulated from the ERGM models as described in the Methods 
section.

The bi-parallel motif occurs in neither of the observed networks, and nor does it occur 
in any of the networks simulated from the corresponding ERGMs. The bi-fan motif, 
however, clearly occurs far more frequently in both observed networks than it does in 
the corresponding simulated networks. Note that these networks are simulated from 
ERGMs that model not just degree distribution, but also the distribution of two-paths 
and transitive triangles. Therefore, this shows that the bi-fan motif appears to be over-
represented in the observed networks, even given the over-representation of transitiv-
ity captured in the models, which also reasonably reproduce the triad census, geodesic 
distance distribution, and dyad-wise and edge-wise shared partner distributions. These 
results are consistent with the results of Milo et al. (2002), where only degree-preserving 
randomization was used.

Limitations
Finding a converged ERGM for a network is not always possible in practice. In par-
ticular, models which include Markov dependency assumption parameters such as 
triangles, corresponding directly to three-node motif candidates such as three-node 
feed-forward-loops (transitive triangles) and three-cycles, for example, usually do not 
converge. For this reason it is normal practice in ERGM modeling to use geomet-
rically weighted or “alternating” configurations to solve this problem (Hunter et  al. 
2012; Robins et al. 2007b; Snijders et al. 2006), as we did in this work. However this 
means we are not answering precisely the same question as when we ask directly if 
a motif is over-represented or not. This is because ERGM is a model for tie (edge 
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or arc) formation, not for motif formation: if we consider ERGM as a type of logis-
tic regression, the outcome variable is the presence or absence of a network tie. The 
predictor variables are not independent of each other, but form a nested hierarchy 
of configurations: triangles are formed by “closing” a two-path with an additional 

Fig. 7  (a) The bi-fan and bi-parallel four-node motifs. Goodness-of-fit plots for these motifs for (b) the Alon 
E. coli regulatory network Model 1 (Table 6), and (c) the Alon yeast regulatory network Model 1 (Table 7). 
The observed network statistics are plotted as a red diamond, with the statistics of 100 simulated networks 
plotted as black boxplots
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edge, for example. So a positive estimate of the alternating k-triangle parameter does 
not directly mean that the transitive triangle (three node feed-forward loop) motif is 
over-represented, but rather that there is tendency (that is, it is more probable than 
chance given the other parameters in the model) for three nodes forming a directed 
two-path to be closed in a transitive triangle. This makes sense in the social network 
origins of the model: it might be assumed to be the result in the observed network 
of the tendency of a person’s friends to also be friends with each other, for example. 
In the context of biological networks, it might be interpreted as a sign of evolution-
ary events, however this interpretation is very much open to question, as briefly dis-
cussed in the Introduction.

Even when the “alternating” configurations are used, it can be difficult or impossible 
to find a converged and well-fitting ERGM for a given network. For example, we were 
unable to fit an ERGM with triangular configurations (using either statnet or EstimNet-
Directed) to an example of a neural network, the whole-animal chemical connectome 
(a directed network with 579 nodes and 5246 arcs) of the male C. elegans worm (Cook 
et al. 2019).

Hence in order to directly test motif significance, without having to fit a parameterized 
model such as ERGM, new methods, such as the “anchored motif” proposed by Fodor 
et al. (2020) are still required.

In some of the models presented here, we used values other than the usual default 
value � = 2 for the decay parameter � of the “alternating” statistics. We had to manu-
ally estimate appropriate values of � based on trial and error, guided by knowledge 
of the observed network, convergence and goodness-of-fit of the models (or lack 
thereof ), and the definitions of the relevant statistics (Koskinen and Daraganova 
2013; Snijders et  al. 2006). It is possible to instead estimate � (or an equivalent 
parameter) directly from the data, as part of the model, using a “curved ERGM” 
(Hunter 2007; Hunter and Handcock 2006), and this is implemented in the statnet R 
package (Handcock et al. 2008, 2016, 2021; Hunter et al. 2008; Krivitsky et al. 2021; 
Morris et al. 2008). However it is not currently possible to estimate curved ERGMs 
using the EstimNetDirected software (Stivala et al. 2020), and this is an area requir-
ing further work. In the absence of such a principled way of estimating the decay 
parameters, an alternative to the heuristic (trial and error) approach used here is to 
estimate many models with systematically varying values of the � decay parameter 
for each relevant “alternating” model parameter, and use a grid search to find the 
model with best fit.3 We applied this method to the Alon yeast regulatory network 
model (Additional file 1: Table S2), using the Mahalanobis distance between a vector 
of some of the observed network summary statistics used for goodness-of-fit (degree 
distributions, reciprocity, giant component size, global and average local clustering 
coefficient), and the corresponding vectors for networks simulated from the model, 
as the value to minimize. We used a two-dimensional grid, varying the � value for 
AltOutStars as one dimension, and the value of � for both AltTwoPaths and AltKTri-
angles (these values should be the same, as described in Snijders et al. (2006)) as the 

3  This strategy was suggested by an anonymous reviewer.
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other dimension. With both values varying from 1.5 to 5.0 in steps of 0.5, we found 
the minimum Mahalanobis distance was at � = 4.5 for the AltOutStars parameter, 
and � = 1.5 for the AltTwoPathsT and AltKTrianglesT parameters. The parameters 
estimated for this model are not substantively different from those in Table 7. The 
values of � that we determined heuristically (Table 7) were at rank 15 (of 64) using 
this criterion. The model with the default � = 2.0 for all alternating statistic parame-
ters, with subjectively poor goodness-of-fit on the out-degree distribution, is at rank 
48 (of 64).

As previously mentioned, the configurations available in an ERGM are determined 
by the dependence assumptions: although there is a lot of flexibility available in 
ERGM configurations, we cannot simply add arbitrary configurations without regard 
for the underlying dependency assumption (Koskinen 2020). The least restrictive 
assumption used in practice is the “social circuit” dependency assumption (Lusher 
et al. 2013; Robins et al. 2007b, 2009; Snijders et al. 2006) used in this work, which 
allows the use of the “alternating” configurations.

We also note that some recent work suggests that complex network structure, 
including heavy-tailed degree distributions, closure (clustering), large connected 
components, and short path lengths can arise simply from thresholding normally 
distributed data to generate the binary network (Cantwell et al. 2020). Hence infer-
ences from ERGM modeling about network structure, just as with other techniques 
such as comparison to ensembles of random graphs, could be consequences of the 
way the binary network was constructed.

Valued ERGMs (Desmarais and Cranmer 2012; Krivitsky 2012) may be used to 
avoid this problem by removing the need to construct a binary network at all, and 
working directly with the network with valued edges. Parameter estimation for these 
models is even more computationally intensive than for binary networks, and hence 
is so far impractical to use for networks of the size considered here. Using new esti-
mation techniques to improve the scalability of parameter estimation for valued 
ERGMs is another area requiring further research.

For the relatively small (on the order of one thousand nodes or fewer) directed 
networks considered here, it is possible to do simulation-based goodness-of-fit tests. 
However, it is possible to estimate ERGM parameters for far larger (over one mil-
lion nodes) networks using the EstimNetDirected software, but it is not practical to 
simulate such large networks from the model, and this is an area requiring further 
work (Stivala et al. 2020).

One further limitation to consider is the execution time of the ERGM technique. 
As discussed in the introductory sections, ERGM parameter estimation is a com-
putationally difficult problem. Although recent advances allow the estimation in 
minutes of models that would have taken hours, or been infeasible to estimate, with 
earlier methods, it is still much more computationally difficult to do this than it is 
to run conventional motif finding methods. The networks used here took between 
three and 73 minutes to estimate, using multiple (up to 64) processor cores in par-
allel. However motif finding with MFinder (Kashtan et  al. 2004) in these networks 
takes only seconds, and with the faster NetMODE method (Li et al. 2012), even less 
time, using only a single processor core.
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Conclusion
We have re-examined the use of exponential random graph models for analyzing 
biological networks, an application first introduced in the bioinformatics literature 
by Saul and Filkov (2007). Advances in ERGM estimation methods since then have 
allowed more sophisticated models to be estimated for more and larger networks 
than was possible at the time, and they are now a more practical technique for mak-
ing inferences about structural hypotheses in biological networks, potentially solving 
some of the problems inherent in conventional methods for testing motif over-repre-
sentation. By using an ERGM, all configurations in the model are tested simultane-
ously, each conditional on all the others, rather than having to test one at a time with 
the other configurations fixed in a (more or less sophisticated, the choice of which is 
critical to the results) null model.

The ERGM models of the Alon E. coli network presented here are the first to retain 
the directed nature of the network and also include terms for triangular structures. 
They confirm the result of Milo et al. (2002) that path closure (feed-forward loop) is 
over-represented, even when we include other, related, parameters in the model.

We also presented the first ERGM models of a yeast regulatory network retaining 
its inherently directed nature (rather than treating it as undirected). We find statisti-
cally significant over-representation of the transitive closure motif, just as Milo et al. 
(2002) did in the same yeast regulatory network, using a simple randomization test.

The lack of the cyclic triangle (feedback loop) structure in the data, however, is 
reproduced by models that do not contain any parameter corresponding to this struc-
ture. This suggests that this structure is not an “anti-motif ”, but rather that its lack is 
a consequence of the structural features of the networks, specifically degree distribu-
tions, two-paths, and transitive closure, that are included in the models.
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