
PhD Completion Seminar

Algorithms for the Study of RNA and Protein

Structure

Alex Stivala
University of Melbourne, CSSE

Supervisors: Prof. Peter Stuckey, Dr Tony Wirth

August 27, 2010

1 / 70

Overview

◮ RNA structural alignment

◮ Parallelism 1: Parallel dynamic programming

◮ Protein substructure searching

◮ Parallelism 2: Faster protein substructure searching

◮ Protein structure cartoons

2 / 70

RNA structural alignment

3 / 70

Introduction: Dynamic Programming

◮ Optimization problems where optimum can be computed
efficiently from optimal solutions to subproblems (Bellman
1957)

◮ Bottom-up

◮ Top-down and memoization

4 / 70

Introduction: RNA secondary structure

◮ RNA has a secondary structure determined by basepairing
interactions within the RNA molecule.

◮ This can be predicted from sequence by a D.P. algorithm such
as that implemented in RNAfold in the Vienna RNA package
(Zuker & Stiegler (1981); Hofacker et al. (1994)).

◮ Rather than one single “best” structure, a base pairing
probability matrix (McCaskill (1990)) can be computed,
showing probabilities of bases pairing with each other.

5 / 70

Example RNA secondary structure (1)

G
C
G
G
G
G
G
U
GCC

C
GAGCCUGGCCAA

A
G G

G G U C G G G C U C
A G

G
A

C
C

C
G
A

U G
G

C
G U

A
GG

C
C
U
G

CGU
G

G
G

U
U

CA
A
AU

CCC
A
CC
C
C
C
C
G
C
A

AP000063

G C G G G G G U G C C C G A G C C U G G C C A A A G G G G U C G G G C U C A G G A C C C G A U G G C G U A G G C C U G C G U G G G U U C A A A U C C C A C C C C C C G C A

G C G G G G G U G C C C G A G C C U G G C C A A A G G G G U C G G G C U C A G G A C C C G A U G G C G U A G G C C U G C G U G G G U U C A A A U C C C A C C C C C C G C AG
C

G
G

G
G

G
U

G
C

C
C

G
A

G
C

C
U

G
G

C
C

A
A

A
G

G
G

G
U

C
G

G
G

C
U

C
A

G
G

A
C

C
C

G
A

U
G

G
C

G
U

A
G

G
C

C
U

G
C

G
U

G
G

G
U

U
C

A
A

A
U

C
C

C
A

C
C

C
C

C
C

G
C

A

G
C

G
G

G
G

G
U

G
C

C
C

G
A

G
C

C
U

G
G

C
C

A
A

A
G

G
G

G
U

C
G

G
G

C
U

C
A

G
G

A
C

C
C

G
A

U
G

G
C

G
U

A
G

G
C

C
U

G
C

G
U

G
G

G
U

U
C

A
A

A
U

C
C

C
A

C
C

C
C

C
C

G
C

A

Figure: Secondary structure (left) and base pairing probability matrix diagram (right) of a tRNA from
Aeropyrum pernix, an aeoribic hyper-thermophillic Archaea species.

6 / 70

RNA structural alignment

D.P. from Hofacker et al. (2004):

S(i , j , k, l) = max















S(i + 1, j , k, l) + γ,

S(i , j , k + 1, l) + γ,

S(i + 1, j , k + 1, l) + σ(Ai ,Bk),
maxh≤j ,q≤l S

M(i , h, k, q) + S(h + 1, j , q + 1, l)

SM(i , j , k, l) = S(i+1, j−1, k+1, l−1)+ΨA
ij +ΨB

kl+τ(Ai ,Aj ,Bk ,Bl)

7 / 70

Parallel dynamic programming

8 / 70

Previous work on parallelizing D.P.

◮ Used the bottom-up approach

◮ Analyze data dependencies and compute independent cells in
parallel

◮ So only works on problems where it is feasible to apply
bottom-up, i.e. compute every single subproblem

◮ And requires careful analysis of data dependencies in each
particular D.P. for parallelization

9 / 70

Overview of our approach

Parallelize any D.P. on a multicore processor with shared memory.

◮ Each thread computes the entire problem.

◮ The results are shared via a lock-free hash table in shared
memory.

◮ Randomization of subproblem ordering causes divergence of
thread computations.

10 / 70

General form of a D.P.

f (x̄) = if b(x̄) then g(x̄)
else F (f (x̄1), . . . , f (x̄n))

where

◮ b(x̄) holds for the base cases

◮ g(x̄) is the result for base cases,

◮ F is a function combining the optimal answers to a number of
sub-problems x̄1, . . . , x̄n.

11 / 70

Computing the D.P.: serial version

f(x̄)
v ← lookup(x̄)
if v 6= KEY NOT FOUND

return v

if b(x̄) then v ← g(x̄)
else

for i ∈ 1..n
v [i] ← f(x̄i)

v ← F (v [1], . . . , v [n])
insert(x̄ ,v)
return v

12 / 70

Computing the D.P.: parallel version

f(x̄)
v ← par lookup(x̄)
if v 6= KEY NOT FOUND

return v

if b(x̄) then v ← g(x̄)
else

for i ∈ 1..n in random order

v [i] ← f(x̄i)
v ← F (v [1], . . . , v [n])

par insert(x̄ ,v)
return v

13 / 70

The D.P.s we use to demonstrate our method

◮ knapsack

◮ shortest paths

◮ RNA structural alignment (we are familiar with this already)

◮ open stacks (skipping this here)

For the D.P. experiments, we used the open addressing hash table.

14 / 70

Application to knapsack

k(i ,w) =















0 if i = 0
k(i − 1,w) if w < wi

max{k(i − 1,w), otherwise
k(i − 1,w − wi) + pi}

There are two possible orderings of the two subproblems in last
case. Each thread chooses one of the two, with equal probability.

15 / 70

Shortest paths

Floyd-Warshall algorithm: s(i , j , k) is the length of the shortest
path from node i to node j using only 1, . . . , k as intermediate
nodes.

s(i , j , k) =















0, if i = j

dij , if k = 0
min{s(i , j , k − 1), otherwise

s(i , k, k − 1) + s(k, j , k − 1)}

where dij is the weight (distance) of the directed edge from i .
The randomization chooses, with equal probability, between the
3! = 6 orderings of the subproblems.

16 / 70

RNA structural alignment (revisited)

D.P. from Hofacker et al. (2004):

S(i , j , k, l) = max















S(i + 1, j , k, l) + γ,

S(i , j , k + 1, l) + γ,

S(i + 1, j , k + 1, l) + σ(Ai ,Bk),
maxh≤j ,q≤l S

M(i , h, k, q) + S(h + 1, j , q + 1, l)

SM(i , j , k, l) = S(i+1, j−1, k+1, l−1)+ΨA
ij +ΨB

kl+τ(Ai ,Aj ,Bk ,Bl)

To randomize, we take a random permutation of the list of all
subproblems in the S(·) and SM(·) computation.

17 / 70

UltraSPARC T1 results (1)

0 5 10 15 20 25 30

0
2

4
6

8
10

12

threads

sp
ee

du
p

knapsack
knapsack (no rand)
shortest paths
shortest paths (no rand)
RNA struct. alignment
RNA struct. alignment (no rand)
open stacks (tiebreak)
open stacks (full)
open stacks (no rand)

18 / 70

UltraSPARC T1 results (2)

problem speedup threads

knapsack 8.97 31
shortest paths 9.88 32
RNA struct. alignment 9.17 31
open stacks (tiebreak) 6.96 27
open stacks (full) 10.83 32

19 / 70

Conclusions (parallel dynamic programming)

◮ We demonstrated a 10x speedup (for 32 threads) on the open
stacks D.P.

◮ Applicable to any dynamic program

◮ Including very large ones where bottom-up impractical

◮ Can also be applied to smaller problems using array not hash
table

◮ No need to analyze data dependencies etc. for vectorization

◮ Only need to consider how to randomize subproblem ordering:
generally trivial but “more random” is better

20 / 70

Protein substructure searching

(the short version — no equations)

21 / 70

Introduction

◮ We want to search for occurrence of substructures in a
database of structures.

◮ This is important to understand protein structure and
function.

◮ Structural matching is a computationally challenging problem.

22 / 70

Protein structure in 3 easy steps (1): Primary

>1UBI:A|PDBID|CHAIN|SEQUENCE

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRL

IFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

23 / 70

Protein structure in 3 easy steps (2): Secondary

24 / 70

Protein structure in 3 easy steps (3): Tertiary

25 / 70

Existing methods

◮ There are lots; I’m not going to go into details here.

◮ Basically two classes:

1. Residue or atom level structural alignment;
2. SSE matching

◮ Class 1 methods are slow as they work at a detailed level so
have large amounts of data;

◮ Class 2 methods are slow as they tend to require solving
computationally hard problems (but on much smaller amounts
of data than class 1).

◮ Lots of heuristic methods to get faster approximations.

26 / 70

TableauSearch

◮ Konagurthu, Stuckey, Lesk (2008) Bioinformatics
24(5):645–651.

◮ This work is an extension of the work cited above.

27 / 70

Tableau encoding

P

O

L R

E D

S T

45°−45°

−135° 135°

0°

90°

180°

−90°

28 / 70

β-grasp query structure and tableau

e

OT e

LE RT xa

PD OS RD xg

RT LE RT LS e

LE RD LE LS OT e

RT LS LS RD PE OS xg

PE RT LE RD OT PE RT e

 0.000

 2.654 0.000

−1.173 2.147 1.000

 0.389 −2.757 1.352 3.000

 2.040 −1.438 2.079 −1.651 0.000

−1.258 1.556 −1.108 −1.647 2.985 0.000

 1.693 −1.808 −1.851 1.309 −0.370 −2.913 3.000

−0.590 2.102 −1.231 0.959 2.566 −0.721 2.264 0.000

(a) (b)

(c) (d)

N

1
2

3

4

5

6

7

8

C

29 / 70

Maximally-similar subtableaux

◮ Finding a substructure within a structure is to find
maximally-similar subtableaux in the two tableaux.

◮ This problem can be formulated as a quadratic integer
program (QIP).

◮ This problem is equivalent to the quadratic assignment
problem and thus NP-hard.

30 / 70

TableauSearch

◮ TableauSearch is a method of approximating the optimum
matching score.

◮ It uses dynamic programming (DP) in an alignment-like
approach.

◮ It is extremely fast; e.g. searching 75632 ASTRAL domains in
66s (Konagurthu et al. (2008)).

◮ But it is only an approximation to the score, and can miss
matches.

◮ More importantly, it is a global alignment, giving high scores
to similar structures - we cannot use it to search for a
substructure in a larger structure.

◮ It also depends on SSE ordering (sequence) being maintained

◮ IR Tableau (Zhang et al. 2010) is an even faster method.

31 / 70

MNAligner

◮ Li et al. 2007 “Alignment of molecular networks by integer
quadratic programming” Bioinformatics 23(13):1631-1639

◮ The formulation of this problem as a QIP in this paper is
strikingly similar to the tableau matching QIP.

◮ But the authors note that the constraints are totally
unimodular.

◮ This means that the QIP can be relaxed to a QP which will
have an integer solution(under certain conditions)

32 / 70

QP tableau search

◮ So by relaxing the QIP to a QP as in MNAligner, we can
much more efficiently solve it. This is essentially what our QP
tableau search method does.

◮ We also need to relax some of the constraints and penalize
their violation in the objective function instead.

◮ I am leaving out the details of the formulation and solution by
interior point method for this short talk.

33 / 70

Evaluation

◮ We ran queries on the ASTRAL SCOP 1.73 95% sequence
identity non-redundant subset (15273 domains).

◮ For assessing whole structure matches, we used a randomly
chosen set of 200 query structures.

◮ For substructure matches, we must make some more manual
comparisons with other methods. We will just show an
example here.

◮ Similarly for non-linear matches.

34 / 70

ROC curves in 200 query set in ASTRAL SCOP 95%

subset

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QP tableau search (norm2)
VAST
SHEBA
TableauSearch (norm2)
TOPS

35 / 70

Serpin B/C sheet substructure (left) found in 1MTP (right)

36 / 70

Conclusions (QP Tableau Search)

◮ Relaxing the QIP tableau matching algorithm to real QP and
solving by interior point method is a sensitive and efficient
method to locate occurrences of a query substructure in a
structure database.

◮ Although slower than the DP TableauSearch or IR Tableau,
this technique is much faster than solving the QIP or ILP
directly with CPLEX and (in common with the latter
methods):

◮ can handle substructure queries;
◮ can remove the ordering constraint to find non-sequential

alignments;
◮ can return the SSE matches, not just a score.

◮ If only we could do it even faster...

37 / 70

Faster protein substructure searching

38 / 70

To try to maximize the same objective function as before, but
much faster, we will:

◮ use simulated annealing

◮ create a parallel implementation on a graphics processing unit
(GPU)

39 / 70

State of the system

Pairwise comparison of structure A with NA SSEs and structure B
with NB SSEs, represented by tableaux TA and TB

The state of the matching is vector v , where

vi = j , 1 ≤ i ≤ NA, 0 ≤ j ≤ NB

means that the ith SSE in structure A is matched with the jth SSE
in structure B, or with no SSE if vi = 0.

40 / 70

Initial state

Each SSE in structure A is matched with the first SSE of the same
type (helix, strand) in structure B, with probability pm.

41 / 70

Move to neighbor state

◮ An SSE i is chosen uniformly at random in structure A and its
mapping changed to a random SSE j of the same type in
structure B, (optionally) without violating the non-crossing
constraint.

◮ If there is no such j , then set vi = 0 i.e. that SSE is no longer
matched.

42 / 70

Simulated annealing schedule

◮ a move is accepted if objective function is better, or if

exp(g(v ′)−g(v)
T

) > p where p is a random number in [0, 1]

◮ T ← αT for the next iteration

◮ repeat until iteration limit (100 iterations) reached

Slightly different from “vanilla” simulated annealing:

◮ The best state ever found is remembered, not necessarily the
final state.

◮ The whole schedule is run M times, we call each a restart.

◮ The answer is the best objective value (and its state) ever
found in any of the restarts.

43 / 70

Graphics Programming Units

◮ Originally for graphics rendering, now “GPGPU” (general
purpose GPU) also used for other parallel algorithms.

◮ NVIDIA proprietary CUDA: extensions to C for GPGPU
programming

◮ OpenCL is a standard for doing the same thing

◮ Data-parallelism: basically SIMD - very many threads running
the same code simultaneously on different data locations.

◮ “co-processing” — host CPU has to send data to GPU and
then get results back from GPU.

◮ Need to use a large number (thousands) of threads to get
good results

44 / 70

GPU Memory hierarchy

◮ Large, high latency global memory

◮ Small (e.g. 16 KB) fast shared memory

◮ Small fast constant (readonly) memory

◮ Thread local memory: this “local” memory is slow like global!

◮ No cache: the programmer manages memory hierarchy.

45 / 70

CUDA programming model

Thread

Key:

Block 5Block 3 Block 4

Grid

Block 2Block 0

Shared memory

Block 1

46 / 70

Parallelization using CUDA (1)

◮ The query data is stored in the constant memory, all threads
can read it quickly

◮ The whole database of structures is stored in the large (slow)
global memory

◮ Two levels of parallelism:
◮ Each block of threads does a single pairwise comparison of the

query to a structure in the database.
◮ Each thread in the block runs the simulated annealing

schedule, so we do the restarts in parallel.

◮ Each block of threads first parallel copies the database
structure it is going to use into its shared memory for fast
access.

47 / 70

Parallelization using CUDA (2)

◮ The only synchronization necessary is:
◮ a barrier after loading structures into shared memory, so all

threads in a block can safely use it
◮ a barrier at the end of the restart to do the MAX reduction

operation to find the best value of objective function over all
threads in the block.

◮ If the number of restarts is larger than the number of threads
in a block, threads in a block will have to run more restarts
until done.

◮ If the number of database structures is larger than the
number of blocks in the grid, the blocks will have to load and
process more db structures until they are done.

48 / 70

Parallelization using CUDA (3)

◮ Structures too large for the shared or constant memory can
still be handled, by leaving them in the global memory, but
this is slower.

◮ The tableau representation is compact — means we don’t
have a problem with overhead communicating data to GPU
(and individual structures are usually small enough for fast
shared/constant memory).

49 / 70

NVIDIA hardware used in experiments

Tesla C1060 4 GB global memory, 30 multiprocessors, 240 cores,
1.30 GHz.

GTX 285 1 GB global memory, 30 multiprocessors, 240 cores,
1.48 GHz.

We used 128 threads/block and 128 blocks/grid (16384 threads
total) for all experiments.

50 / 70

Results for ASTRAL 95% 200 query set

standard 95% C. I.
Method Platform Restarts Elapsed time AUC error lower upper
SHEBA CPU - 25 h 22 m 0.931 0.004 0.924 0.938
SA Tableau Search CPU 4096 142 h 42 m 0.930 0.004 0.923 0.937
SA Tableau Search GTX 285 4096 4 h 11 m 0.930 0.004 0.923 0.937
SA Tableau Search Tesla C1060 4096 5 h 40 m 0.930 0.004 0.923 0.937
DaliLite CPU - 620 h 03 m 0.929 0.004 0.922 0.936
SA Tableau Search CPU 128 4 h 18 m 0.921 0.004 0.913 0.929
SA Tableau Search GTX 285 128 0 h 08 m 0.920 0.004 0.912 0.927
SA Tableau Search Tesla C1060 128 0 h 11 m 0.920 0.004 0.912 0.927
QP Tableau Search CPU - 157 h 51 m 0.914 0.004 0.906 0.922
LOCK2 CPU - 208 h 09 m 0.912 0.004 0.904 0.920
TableauSearch CPU - 1 h 11 m 0.858 0.005 0.848 0.867
TOPS CPU - 1 h 11 m 0.855 0.005 0.845 0.864
VAST CPU - 14 h 26 m 0.855 0.005 0.846 0.865
IR Tableau CPU - 0 h 01 m 0.854 0.005 0.844 0.864
YAKUSA CPU - 4 h 14 m 0.827 0.005 0.816 0.837

51 / 70

AUC versus elapsed time on CPU and GPUs

0 200 400 600 800

0.
92

0
0.

92
2

0.
92

4
0.

92
6

0.
92

8
0.

93
0

elapsed time (minutes)

A
U

C

128

256

512

1024 2048

4096 8192

128

256

512

1024 2048

4096 8192

128

256

GTX 285
Tesla C1060
CPU (AMD Opteron)

52 / 70

β-grasp motif query

53 / 70

Motif query results

standard 95% C. I.
Query Method Platform Restarts Elapsed time AUC error lower upper
d1ubia SA GTX 285 128 00 m 03 s 0.918 0.011 0.896 0.940
d1ubia SA CPU 128 01 m 17 s 0.912 0.011 0.890 0.935
d1ubia QP CPU - 05 m 11 s 0.902 0.012 0.879 0.926
d1ubia TOPS CPU - 00 m 10 s 0.894 0.012 0.870 0.918
β-grasp SA CPU 128 01 m 11 s 0.939 0.010 0.920 0.958
β-grasp QP CPU - 02 m 01 s 0.938 0.010 0.918 0.957
β-grasp SA GTX 285 128 00 m 03 s 0.934 0.010 0.914 0.954
β-grasp TOPS CPU - 00 m 09 s 0.847 0.014 0.819 0.875
serpin B/C sheet SA GTX 285 128 00 m 03 s 0.993 0.013 0.968 1.019
serpin B/C sheet SA CPU 128 01 m 19 s 0.991 0.015 0.962 1.021
serpin B/C sheet QP CPU - 08 m 16 s 0.986 0.019 0.949 1.023
serpin B/C sheet TOPS CPU - 00 m 24 s 0.491 0.054 0.385 0.597

54 / 70

Conclusions (SA Tableau Search)

◮ Comparable in speed and accuracy with widely used methods

◮ Up to 34× speedup on GPU over CPU

◮ Making it one of the fastest available methods

◮ The first use of a GPU for protein structure search

◮ If only there were a graphical interface for building motif
queries...

55 / 70

Protein structure cartoons

56 / 70

Cartoons

◮ hand-drawn

◮ HERA / ProMotif (Hutchinson and Thornton 1990, 1996)

◮ TOPS (Flores et al. 1994, Westhead et al. 1999)

◮ hand-drawn with TopDraw (Bond, 2003)

◮ PDBSum topology cartoons (Laskowski et al. 2006), based on
HERA.

57 / 70

Example - 1HH1

Holliday junction resolvase, PDB id 1HH1, Bond et al. 2001, image generated with PyMol

58 / 70

HERA / ProMotif (Hutchinson and Thornton 1996)

1HH1

 96 V

 97 L

 98 K

 99 F

 100 I

 101 P

 102 F

 103 E

 104 K

 105 L

 93 K

 92 K

 91 V

 90 G

 89 L

 88 F

 87 L

 86 S

 57 K

 56 M

 55 E

 54 I

 53 L

 52 I

 51 I

 50 V

 42 D

 43 I

 44 I

 45 A

 46 L

 47 K

 29 A

 28 R

 27 V

 26 V

 25 A

 22 K

 21 D

 20 R

 19 L

 18 R

 17 S

 16 V

 15 I

 14 N

 13 R

 12 E

 11 V

 10 A

 9 S

 59 R

 60 K

 61 D

 84 G

 83 S

 82 K

 81 R

 80 A

 79 F

 78 E

 77 I

 76 I

 75 G

 74 E

 73 A

 72 Q

 71 E

 70 R

 69 R

 68 V

 67 Y

 66 I

 65 K

 112 N

 113 Y

 114 V

 115 A

 123 D

 124 L

 125 E

 126 D

 127 L

 128 V

 129 R

 130 L

 131 V

 132 E

 133 A

 134 K

 135 I

 136 S

 137 R

 138 T

 139 L

 140 D

 108 T

 107 R

 106 R

N

C

 24

 23

 24

 64

 85

 85

 95

 122
 122

 111

 116

59 / 70

PDBSum

96

102

103105

86

93

50

57

42

47 25

29

9

22

N

59
61

69

84

65

68

112

115

123

140

C

106
108

60 / 70

N1

C2

Figure: TOPS vs manually drawn with TopDraw

61 / 70

N

A

1
2

3

4

5 B

6

7

8

9CC

Figure: Pro-origami vs manually drawn with TopDraw

62 / 70

The essence of our approach

◮ Generate specifications of cartoon elements (SSEs)

◮ Generate connections and relationships between the cartoon
elements as constraints

◮ Give this information to the constraint-based diagram editor
Dunnart (Wybrow et al. 2006; Dwyer et al. 2009)

◮ Dunnart will lay out the diagram consistent with the
constraints and can be used interactively to edit it,
maintaining the constraints.

63 / 70

Plu-MACPF, PDB id 2QP2 (Rosado et al. 2007)

64 / 70

Comparison of TOPS, PDBSum and Pro-origami for Plu-MACPF

65 / 70

Using Pro-origami to make structural motif query

66 / 70

Conclusions

◮ We found that bounding for the RNA structural alignment
d.p. was not successful

◮ But we demonstrated a 9× speedup (32 threads) by
parallelizing that d.p.,

◮ as a specific example of a completely general method for
parallelizing any d.p., without regard to its specific properties.

◮ We developed two new algorithms for tableau-based protein
structure/motif search,

◮ and a parallel implementation of one on a GPU — the first
use of a GPU for the protein structure search problem, and
one of the fastest available methods.

◮ We developed a system for automatically generating protein
structure cartoons by means of constraint-based diagrams,

◮ and its use as a substructure query building interface to our
protein substructure search algorithms.

67 / 70

Acknowledgments

◮ Prof. Peter Stuckey

◮ Dr Tony Wirth

◮ Dr Linda Stern

◮ A/Prof. Maria Garcia de la Banda

◮ Prof. Manuel Hermenegildo

◮ Dr Michael Wybrow

◮ Prof. James Whisstock

◮ Dr Arun Konagurthu

◮ VPAC

◮ Tech. services.

68 / 70

Publications

◮ A. Stivala, A. Wirth, P.J. Stuckey, “Tableau-based protein
substructure search using quadratic programming”, BMC

Bioinformatics (2009), 10:153

◮ A. Stivala, P.J. Stuckey, M. Garcia de la Banda, M.
Hermenegildo, A. Wirth, “Lock-free parallel dynamic
programming”, J. Parallel Distrib. Comput. (2010),
70:839-848

◮ A. Stivala, P.J. Stuckey, A. Wirth, “Fast and accurate protein
substructure searching with simulated annealing and GPUs”,
submitted to BMC Bioinformatics (under review)

◮ A. Stivala, M.J. Wybrow, A. Wirth, J.C. Whisstock, P.J.
Stuckey, “Automatic generation of protein structure cartoons
with Pro-origami”, submitted to Bioinformatics (under review)

69 / 70

Source code, data sets, web server, etc.

◮ QP Tableau Search:
http://www.csse.unimelb.edu.au/~astivala/qpprotein

◮ SA Tableau Search:
http://www.csse.unimelb.edu.au/~astivala/satabsearch

◮ Pro-origami server:
http://munk.csse.unimelb.edu.au/pro-origami

70 / 70

http://www.csse.unimelb.edu.au/~astivala/qpprotein
http://www.csse.unimelb.edu.au/~astivala/satabsearch
http://munk.csse.unimelb.edu.au/pro-origami

