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Overview

◮ RNA structural alignment

◮ Parallelism 1: Parallel dynamic programming

◮ Protein substructure searching

◮ Parallelism 2: Faster protein substructure searching

◮ Protein structure cartoons
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RNA structural alignment
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Introduction: Dynamic Programming

◮ Optimization problems where optimum can be computed
efficiently from optimal solutions to subproblems (Bellman
1957)

◮ Bottom-up

◮ Top-down and memoization
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Introduction: RNA secondary structure

◮ RNA has a secondary structure determined by basepairing
interactions within the RNA molecule.

◮ This can be predicted from sequence by a D.P. algorithm such
as that implemented in RNAfold in the Vienna RNA package
(Zuker & Stiegler (1981); Hofacker et al. (1994)).

◮ Rather than one single “best” structure, a base pairing
probability matrix (McCaskill (1990)) can be computed,
showing probabilities of bases pairing with each other.
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Example RNA secondary structure (1)
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Figure: Secondary structure (left) and base pairing probability matrix diagram (right) of a tRNA from
Aeropyrum pernix, an aeoribic hyper-thermophillic Archaea species.
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RNA structural alignment

D.P. from Hofacker et al. (2004):

S(i , j , k, l) = max















S(i + 1, j , k, l) + γ,

S(i , j , k + 1, l) + γ,

S(i + 1, j , k + 1, l) + σ(Ai ,Bk),
maxh≤j ,q≤l S

M(i , h, k, q) + S(h + 1, j , q + 1, l)

SM(i , j , k, l) = S(i+1, j−1, k+1, l−1)+ΨA
ij +ΨB

kl+τ(Ai ,Aj ,Bk ,Bl)
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Parallel dynamic programming
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Previous work on parallelizing D.P.

◮ Used the bottom-up approach

◮ Analyze data dependencies and compute independent cells in
parallel

◮ So only works on problems where it is feasible to apply
bottom-up, i.e. compute every single subproblem

◮ And requires careful analysis of data dependencies in each
particular D.P. for parallelization

9 / 70



Overview of our approach

Parallelize any D.P. on a multicore processor with shared memory.

◮ Each thread computes the entire problem.

◮ The results are shared via a lock-free hash table in shared
memory.

◮ Randomization of subproblem ordering causes divergence of
thread computations.
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General form of a D.P.

f (x̄) = if b(x̄) then g(x̄)
else F (f (x̄1), . . . , f (x̄n))

where

◮ b(x̄) holds for the base cases

◮ g(x̄) is the result for base cases,

◮ F is a function combining the optimal answers to a number of
sub-problems x̄1, . . . , x̄n.
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Computing the D.P.: serial version

f(x̄)
v ← lookup(x̄)
if v 6= KEY NOT FOUND

return v

if b(x̄) then v ← g(x̄)
else

for i ∈ 1..n
v [i ] ← f(x̄i )

v ← F (v [1], . . . , v [n])
insert(x̄ ,v)
return v
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Computing the D.P.: parallel version

f(x̄)
v ← par lookup(x̄)
if v 6= KEY NOT FOUND

return v

if b(x̄) then v ← g(x̄)
else

for i ∈ 1..n in random order

v [i ] ← f(x̄i )
v ← F (v [1], . . . , v [n])

par insert(x̄ ,v)
return v
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The D.P.s we use to demonstrate our method

◮ knapsack

◮ shortest paths

◮ RNA structural alignment (we are familiar with this already)

◮ open stacks (skipping this here)

For the D.P. experiments, we used the open addressing hash table.
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Application to knapsack

k(i ,w) =















0 if i = 0
k(i − 1,w) if w < wi

max{k(i − 1,w), otherwise
k(i − 1,w − wi ) + pi}

There are two possible orderings of the two subproblems in last
case. Each thread chooses one of the two, with equal probability.
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Shortest paths

Floyd-Warshall algorithm: s(i , j , k) is the length of the shortest
path from node i to node j using only 1, . . . , k as intermediate
nodes.

s(i , j , k) =















0, if i = j

dij , if k = 0
min{s(i , j , k − 1), otherwise

s(i , k, k − 1) + s(k, j , k − 1)}

where dij is the weight (distance) of the directed edge from i .
The randomization chooses, with equal probability, between the
3! = 6 orderings of the subproblems.
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RNA structural alignment (revisited)

D.P. from Hofacker et al. (2004):

S(i , j , k, l) = max















S(i + 1, j , k, l) + γ,

S(i , j , k + 1, l) + γ,

S(i + 1, j , k + 1, l) + σ(Ai ,Bk),
maxh≤j ,q≤l S

M(i , h, k, q) + S(h + 1, j , q + 1, l)

SM(i , j , k, l) = S(i+1, j−1, k+1, l−1)+ΨA
ij +ΨB

kl+τ(Ai ,Aj ,Bk ,Bl)

To randomize, we take a random permutation of the list of all
subproblems in the S(·) and SM(·) computation.
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UltraSPARC T1 results (1)
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UltraSPARC T1 results (2)

problem speedup threads

knapsack 8.97 31
shortest paths 9.88 32
RNA struct. alignment 9.17 31
open stacks (tiebreak) 6.96 27
open stacks (full) 10.83 32
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Conclusions (parallel dynamic programming)

◮ We demonstrated a 10x speedup (for 32 threads) on the open
stacks D.P.

◮ Applicable to any dynamic program

◮ Including very large ones where bottom-up impractical

◮ Can also be applied to smaller problems using array not hash
table

◮ No need to analyze data dependencies etc. for vectorization

◮ Only need to consider how to randomize subproblem ordering:
generally trivial but “more random” is better
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Protein substructure searching

(the short version — no equations)
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Introduction

◮ We want to search for occurrence of substructures in a
database of structures.

◮ This is important to understand protein structure and
function.

◮ Structural matching is a computationally challenging problem.
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Protein structure in 3 easy steps (1): Primary

>1UBI:A|PDBID|CHAIN|SEQUENCE

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRL

IFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG
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Protein structure in 3 easy steps (2): Secondary
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Protein structure in 3 easy steps (3): Tertiary

25 / 70



Existing methods

◮ There are lots; I’m not going to go into details here.

◮ Basically two classes:

1. Residue or atom level structural alignment;
2. SSE matching

◮ Class 1 methods are slow as they work at a detailed level so
have large amounts of data;

◮ Class 2 methods are slow as they tend to require solving
computationally hard problems (but on much smaller amounts
of data than class 1).

◮ Lots of heuristic methods to get faster approximations.
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TableauSearch

◮ Konagurthu, Stuckey, Lesk (2008) Bioinformatics
24(5):645–651.

◮ This work is an extension of the work cited above.

27 / 70



Tableau encoding
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β-grasp query structure and tableau
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Maximally-similar subtableaux

◮ Finding a substructure within a structure is to find
maximally-similar subtableaux in the two tableaux.

◮ This problem can be formulated as a quadratic integer
program (QIP).

◮ This problem is equivalent to the quadratic assignment
problem and thus NP-hard.
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TableauSearch

◮ TableauSearch is a method of approximating the optimum
matching score.

◮ It uses dynamic programming (DP) in an alignment-like
approach.

◮ It is extremely fast; e.g. searching 75632 ASTRAL domains in
66s (Konagurthu et al. (2008)).

◮ But it is only an approximation to the score, and can miss
matches.

◮ More importantly, it is a global alignment, giving high scores
to similar structures - we cannot use it to search for a
substructure in a larger structure.

◮ It also depends on SSE ordering (sequence) being maintained

◮ IR Tableau (Zhang et al. 2010) is an even faster method.

31 / 70



MNAligner

◮ Li et al. 2007 “Alignment of molecular networks by integer
quadratic programming” Bioinformatics 23(13):1631-1639

◮ The formulation of this problem as a QIP in this paper is
strikingly similar to the tableau matching QIP.

◮ But the authors note that the constraints are totally
unimodular.

◮ This means that the QIP can be relaxed to a QP which will
have an integer solution(under certain conditions)
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QP tableau search

◮ So by relaxing the QIP to a QP as in MNAligner, we can
much more efficiently solve it. This is essentially what our QP
tableau search method does.

◮ We also need to relax some of the constraints and penalize
their violation in the objective function instead.

◮ I am leaving out the details of the formulation and solution by
interior point method for this short talk.
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Evaluation

◮ We ran queries on the ASTRAL SCOP 1.73 95% sequence
identity non-redundant subset (15273 domains).

◮ For assessing whole structure matches, we used a randomly
chosen set of 200 query structures.

◮ For substructure matches, we must make some more manual
comparisons with other methods. We will just show an
example here.

◮ Similarly for non-linear matches.
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ROC curves in 200 query set in ASTRAL SCOP 95%

subset
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Serpin B/C sheet substructure (left) found in 1MTP (right)
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Conclusions (QP Tableau Search)

◮ Relaxing the QIP tableau matching algorithm to real QP and
solving by interior point method is a sensitive and efficient
method to locate occurrences of a query substructure in a
structure database.

◮ Although slower than the DP TableauSearch or IR Tableau,
this technique is much faster than solving the QIP or ILP
directly with CPLEX and (in common with the latter
methods):

◮ can handle substructure queries;
◮ can remove the ordering constraint to find non-sequential

alignments;
◮ can return the SSE matches, not just a score.

◮ If only we could do it even faster...
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Faster protein substructure searching
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To try to maximize the same objective function as before, but
much faster, we will:

◮ use simulated annealing

◮ create a parallel implementation on a graphics processing unit
(GPU)
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State of the system

Pairwise comparison of structure A with NA SSEs and structure B
with NB SSEs, represented by tableaux TA and TB

The state of the matching is vector v , where

vi = j , 1 ≤ i ≤ NA, 0 ≤ j ≤ NB

means that the ith SSE in structure A is matched with the jth SSE
in structure B, or with no SSE if vi = 0.
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Initial state

Each SSE in structure A is matched with the first SSE of the same
type (helix, strand) in structure B, with probability pm.
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Move to neighbor state

◮ An SSE i is chosen uniformly at random in structure A and its
mapping changed to a random SSE j of the same type in
structure B, (optionally) without violating the non-crossing
constraint.

◮ If there is no such j , then set vi = 0 i.e. that SSE is no longer
matched.
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Simulated annealing schedule

◮ a move is accepted if objective function is better, or if

exp(g(v ′)−g(v)
T

) > p where p is a random number in [0, 1]

◮ T ← αT for the next iteration

◮ repeat until iteration limit (100 iterations) reached

Slightly different from “vanilla” simulated annealing:

◮ The best state ever found is remembered, not necessarily the
final state.

◮ The whole schedule is run M times, we call each a restart.

◮ The answer is the best objective value (and its state) ever
found in any of the restarts.

43 / 70



Graphics Programming Units

◮ Originally for graphics rendering, now “GPGPU” (general
purpose GPU) also used for other parallel algorithms.

◮ NVIDIA proprietary CUDA: extensions to C for GPGPU
programming

◮ OpenCL is a standard for doing the same thing

◮ Data-parallelism: basically SIMD - very many threads running
the same code simultaneously on different data locations.

◮ “co-processing” — host CPU has to send data to GPU and
then get results back from GPU.

◮ Need to use a large number (thousands) of threads to get
good results
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GPU Memory hierarchy

◮ Large, high latency global memory

◮ Small (e.g. 16 KB) fast shared memory

◮ Small fast constant (readonly) memory

◮ Thread local memory: this “local” memory is slow like global!

◮ No cache: the programmer manages memory hierarchy.
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CUDA programming model

Thread

Key:

Block 5Block 3 Block 4

Grid

Block 2Block 0

Shared memory

Block 1
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Parallelization using CUDA (1)

◮ The query data is stored in the constant memory, all threads
can read it quickly

◮ The whole database of structures is stored in the large (slow)
global memory

◮ Two levels of parallelism:
◮ Each block of threads does a single pairwise comparison of the

query to a structure in the database.
◮ Each thread in the block runs the simulated annealing

schedule, so we do the restarts in parallel.

◮ Each block of threads first parallel copies the database
structure it is going to use into its shared memory for fast
access.
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Parallelization using CUDA (2)

◮ The only synchronization necessary is:
◮ a barrier after loading structures into shared memory, so all

threads in a block can safely use it
◮ a barrier at the end of the restart to do the MAX reduction

operation to find the best value of objective function over all
threads in the block.

◮ If the number of restarts is larger than the number of threads
in a block, threads in a block will have to run more restarts
until done.

◮ If the number of database structures is larger than the
number of blocks in the grid, the blocks will have to load and
process more db structures until they are done.
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Parallelization using CUDA (3)

◮ Structures too large for the shared or constant memory can
still be handled, by leaving them in the global memory, but
this is slower.

◮ The tableau representation is compact — means we don’t
have a problem with overhead communicating data to GPU
(and individual structures are usually small enough for fast
shared/constant memory).
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NVIDIA hardware used in experiments

Tesla C1060 4 GB global memory, 30 multiprocessors, 240 cores,
1.30 GHz.

GTX 285 1 GB global memory, 30 multiprocessors, 240 cores,
1.48 GHz.

We used 128 threads/block and 128 blocks/grid (16384 threads
total) for all experiments.
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Results for ASTRAL 95% 200 query set

standard 95% C. I.
Method Platform Restarts Elapsed time AUC error lower upper
SHEBA CPU - 25 h 22 m 0.931 0.004 0.924 0.938
SA Tableau Search CPU 4096 142 h 42 m 0.930 0.004 0.923 0.937
SA Tableau Search GTX 285 4096 4 h 11 m 0.930 0.004 0.923 0.937
SA Tableau Search Tesla C1060 4096 5 h 40 m 0.930 0.004 0.923 0.937
DaliLite CPU - 620 h 03 m 0.929 0.004 0.922 0.936
SA Tableau Search CPU 128 4 h 18 m 0.921 0.004 0.913 0.929
SA Tableau Search GTX 285 128 0 h 08 m 0.920 0.004 0.912 0.927
SA Tableau Search Tesla C1060 128 0 h 11 m 0.920 0.004 0.912 0.927
QP Tableau Search CPU - 157 h 51 m 0.914 0.004 0.906 0.922
LOCK2 CPU - 208 h 09 m 0.912 0.004 0.904 0.920
TableauSearch CPU - 1 h 11 m 0.858 0.005 0.848 0.867
TOPS CPU - 1 h 11 m 0.855 0.005 0.845 0.864
VAST CPU - 14 h 26 m 0.855 0.005 0.846 0.865
IR Tableau CPU - 0 h 01 m 0.854 0.005 0.844 0.864
YAKUSA CPU - 4 h 14 m 0.827 0.005 0.816 0.837
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AUC versus elapsed time on CPU and GPUs
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β-grasp motif query
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Motif query results

standard 95% C. I.
Query Method Platform Restarts Elapsed time AUC error lower upper
d1ubia SA GTX 285 128 00 m 03 s 0.918 0.011 0.896 0.940
d1ubia SA CPU 128 01 m 17 s 0.912 0.011 0.890 0.935
d1ubia QP CPU - 05 m 11 s 0.902 0.012 0.879 0.926
d1ubia TOPS CPU - 00 m 10 s 0.894 0.012 0.870 0.918
β-grasp SA CPU 128 01 m 11 s 0.939 0.010 0.920 0.958
β-grasp QP CPU - 02 m 01 s 0.938 0.010 0.918 0.957
β-grasp SA GTX 285 128 00 m 03 s 0.934 0.010 0.914 0.954
β-grasp TOPS CPU - 00 m 09 s 0.847 0.014 0.819 0.875
serpin B/C sheet SA GTX 285 128 00 m 03 s 0.993 0.013 0.968 1.019
serpin B/C sheet SA CPU 128 01 m 19 s 0.991 0.015 0.962 1.021
serpin B/C sheet QP CPU - 08 m 16 s 0.986 0.019 0.949 1.023
serpin B/C sheet TOPS CPU - 00 m 24 s 0.491 0.054 0.385 0.597
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Conclusions (SA Tableau Search)

◮ Comparable in speed and accuracy with widely used methods

◮ Up to 34× speedup on GPU over CPU

◮ Making it one of the fastest available methods

◮ The first use of a GPU for protein structure search

◮ If only there were a graphical interface for building motif
queries...
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Protein structure cartoons

56 / 70



Cartoons

◮ hand-drawn

◮ HERA / ProMotif (Hutchinson and Thornton 1990, 1996)

◮ TOPS (Flores et al. 1994, Westhead et al. 1999)

◮ hand-drawn with TopDraw (Bond, 2003)

◮ PDBSum topology cartoons (Laskowski et al. 2006), based on
HERA.
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Example - 1HH1

Holliday junction resolvase, PDB id 1HH1, Bond et al. 2001, image generated with PyMol
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HERA / ProMotif (Hutchinson and Thornton 1996)
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PDBSum
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N1

C2

Figure: TOPS vs manually drawn with TopDraw
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The essence of our approach

◮ Generate specifications of cartoon elements (SSEs)

◮ Generate connections and relationships between the cartoon
elements as constraints

◮ Give this information to the constraint-based diagram editor
Dunnart (Wybrow et al. 2006; Dwyer et al. 2009)

◮ Dunnart will lay out the diagram consistent with the
constraints and can be used interactively to edit it,
maintaining the constraints.
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Plu-MACPF, PDB id 2QP2 (Rosado et al. 2007)
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Comparison of TOPS, PDBSum and Pro-origami for Plu-MACPF
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Using Pro-origami to make structural motif query
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Conclusions

◮ We found that bounding for the RNA structural alignment
d.p. was not successful

◮ But we demonstrated a 9× speedup (32 threads) by
parallelizing that d.p.,

◮ as a specific example of a completely general method for
parallelizing any d.p., without regard to its specific properties.

◮ We developed two new algorithms for tableau-based protein
structure/motif search,

◮ and a parallel implementation of one on a GPU — the first
use of a GPU for the protein structure search problem, and
one of the fastest available methods.

◮ We developed a system for automatically generating protein
structure cartoons by means of constraint-based diagrams,

◮ and its use as a substructure query building interface to our
protein substructure search algorithms.
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with Pro-origami”, submitted to Bioinformatics (under review)
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Source code, data sets, web server, etc.

◮ QP Tableau Search:
http://www.csse.unimelb.edu.au/~astivala/qpprotein

◮ SA Tableau Search:
http://www.csse.unimelb.edu.au/~astivala/satabsearch

◮ Pro-origami server:
http://munk.csse.unimelb.edu.au/pro-origami
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