
Maksym Byshkin1, Alex Stivala1,2, Antonietta Mira1,4, Garry 
Robins3, Alessandro Lomi1,3

1Università della Svizzera italiana, Lugano, Switzerland
2Swinburne University of Technology, Australia
3University of Melbourne, Australia
4Università dell’Insubria, Como, Italy

Efficient Markov Chain Monte Carlo Estimation of 
Exponential-Family Random Graph models

Second Australian Social Network Analysis Conference, Sydney, 
November 28-29, 2017



Introduction

1( , ) exp ( )A A
A

x z x
k

π θ θ =  
 
∑

ERGMs are exponential family of probability distributions for 
dependent network data
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We have developed efficient Markov chain-based algorithm to 
perform Maximum Likelihood parameter estimation for probability 
distributions with intractable normalizing constants

Robins G, Snijders T, Wang P, Handcock M, & Pattison P (2007) Recent developments in 
exponential random graph (p*) models for social networks. Social Networks 29(2):192-215.

zA(x) are networks statistics (e.g. number of ties, triangles, stars ..)
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are expected statistics 

Metropolis-Hastings algorithm may be used to compute
and to generate simulated data

And we want to solve inverse problem: find 
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Introduction

Lehmann, E.L., Casella, G. Theory of point estimation (2006)

We want to find MLE of the model parameters     θ



1) Bayesian
2) Geyer-Thompson MCMCMLE
3) Method of Moments 

(Stochastic approximation)

- Iteratively update
- At many different      values perform MCMC 
simulations to draw simulated data

Aθ

( )Ax θ
Aθ

MLE is computationally expensive

Existing estimation approaches 

We can find MCMCMLE without MCMC simulation 
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Acceptance probability 

Given the state x the state x’  is proposed with probability  ( ')q x x→

Transition probability ( ', ) ( ') ( ', )A AP x x q x x x xθ α θ→ = → →

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, & Teller E Equation of state 
calculations by fast computing machines. The journal of chemical physics 21, 1087-1092 (1953) 
Hastings WK, Monte Carlo sampling methods using Markov chains and their applications. 
Biometrika 57, 97-109  (1970) 

Metropolis-Hastings algorithm

The algorithm generates a Markov chain xt that  converges to
if the algorithm step t is larger then the burn-in time 

𝜋𝜋 𝑥𝑥, 𝜃𝜃
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New approaches for MLE
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P 𝑥𝑥 → 𝑥𝑥′, 𝜃𝜃 (𝑧𝑧𝐴𝐴 𝑥𝑥′ −𝑧𝑧𝐴𝐴 𝑥𝑥 )

I can show that for simulated networks drawn from 
MLE may be found from Equilibrium Expectation (EE):

The left part may be computed by Monte Carlo 
integrations, without time consuming MCMC simulation

𝜋𝜋(𝑥𝑥, 𝜃𝜃)



If observed network xobs is large then one sample is enough
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But may be used also for small networks

New approaches for MLE

Very fast MLE !



MLE for empirical data
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How to apply this methodology for empirical data xobs ?
We can draw simulated data     so that ( ) ( )A A obsz x z x=

We have developed MCMC algorithm to solve this system of equation

x



MCMC to constrain the values of all the statistics

EE algorithm for empirical data



MoM (Snijders 2002) and MCMCMLE (Geyer CJ & Thompson  
1992) require many converged outputs of Metropolis-Hastings algorithm

EE algorithm does not need such outputs. Instead it generates one 
converged output

EE algorithm is similar to Metropolis-Hastings algorithm, but allows 
Monte Carlo simulation to be performed while constraining the values of 
statistics  zA(x) and in such a way that the EE condition is satisfied 

EE algorithm for empirical data



Networks statistics typical for social networks
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Snijders T.A., Pattison P.E., Robins G.L., Handcock M.S., New specifications for exponential 
random graph models, Sociological Methodology 36(1), 99-153 (2006)
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Node attributes

Tests and applications



With EE algorithm the estimation time grows with number of 
nodes N almost linear 

We use EE algorithm to estimate parameters of ERGMs
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Tests and applications

Snijders, Tom AB. Markov chain Monte Carlo estimation of exponential random graph 
models, Journal of Social Structure, 1-40 (2002) 
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Tests and applications. Biological networks

Stivala, A. D., Koskinen, J. H., Rolls, D. A., Wang, P., & Robins, G. L. (2016). Snowball sampling for 
estimating exponential random graph models for large networks. Social Networks, 47, 167-188.



Tests and applications. Biological networks

IFD  sampler: Byshkin M, Stivala A, Mira A, Krause R, Robins G, Lomi A, Auxiliary Parameter 
MCMC for Exponential Random Graph Models J. Stat. Phys. 165: 740-754 (2016)



Tests and applications. Biological networks

This research was supported by Melbourne Bioinformatics 
at the University of Melbourne, grant number VR0261



was a social network for language learning
104103 nodes and 2193083 ties

Zafarani and H. Liu. Social computing data repository at ASU, 2009 
Livmocha network datasets, konect.uni-koblenz.de

Output of EE algorithm with IFD sampler (in 12 hours)

0.6242

2.7917      

-19.531     

Tests and applications. Large  networks
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 Statistics is constrained to the observed values

With good scaling we can obtain MLE for large dependent data



Both convergence tests are passed

Networks with 104103 nodes and 2193083 ties
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Our convergence test
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t-ratio convergence test

Tests and applications. Large  networks

Snijders T, Journal of Social Structure (2002): 1-40



More presentations

- Complex Networks, March 20-24, 2017, Dubrovnik, Croatia
- Sunbelt INSNA Conference, May 30-June 4, 2017, Beijing, China
- Cambridge Networks Day, 13th June 2017, Cambridge, UK
- PASC17, June 26 - 28, 2017, Lugano, Switzerland
- International Conference on Monte Carlo Methods and 
Applications, July 3-7, 2017, Montreal, Canada
- International Conference on Computational Social Science,  July 
10-13, 2017, Cologne, Germany
- Third European Conference on Social Networks, September 26 to 
29,  2017, Mainz, Germany
- 2nd Australian Social Network Analysis Conference, 28-29 
November 2017, Sydney, Australia

The code will be available free of charge
www.sonarcenter.eco.usi.ch

http://www.sonarcenter.eco.usi.ch/


Hidden bonus slides



If on step t the chain is in state x what is the expected 
network statistics on the next step x′?

New approaches for MLE

( ) ( ( )) ( ) ( , )A A
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The expected network statistics: 
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The expectation must be taken with respect to P(𝑥𝑥 → 𝑥𝑥′, 𝜃𝜃)

The expectation must be taken with respect to

The expected network statistics: 
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