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ERGMs are exponential family of probability distributions for 
dependent network data
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We have developed efficient Markov chain-based algorithm to 
perform Maximum Likelihood parameter estimation for probability 
distributions with intractable normalizing constants

Robins G, Snijders T, Wang P, Handcock M, & Pattison P (2007) Recent developments in 
exponential random graph (p*) models for social networks. Social Networks 29(2):192-215.

zA(x) are networks statistics (e.g. number of ties, triangles, stars ..)
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are expected statistics 

Metropolis-Hastings algorithm may be used to compute
and to generate simulated data

And we want to solve inverse problem: find 
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Introduction

Lehmann, E.L., Casella, G. Theory of point estimation (2006)

We want to find MLE of the model parameters     θ



1) Bayesian
2) Geyer-Thompson MCMCMLE
3) Method of Moments 

(Stochastic approximation)

- Iteratively update
- At many different      values perform MCMC 
simulations to draw simulated data

Aθ

( )Ax θ
Aθ

MLE is computationally expensive

Existing estimation approaches 

We can find MCMCMLE without MCMC simulation 
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Acceptance probability 

Given the state x the state x’  is proposed with probability  ( ')q x x→

Transition probability ( ', ) ( ') ( ', )A AP x x q x x x xθ α θ→ = → →

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, & Teller E Equation of state 
calculations by fast computing machines. The journal of chemical physics 21, 1087-1092 (1953) 
Hastings WK, Monte Carlo sampling methods using Markov chains and their applications. 
Biometrika 57, 97-109  (1970) 

Metropolis-Hastings algorithm

The algorithm generates a Markov chain xt that  converges to
if the algorithm step t is larger then the burn-in time 

𝜋𝜋 𝑥𝑥,𝜃𝜃
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New approaches for MLE

𝑑𝑑𝑑𝑑𝐴𝐴(𝑥𝑥,𝜃𝜃) = �
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P 𝑥𝑥 → 𝑥𝑥′,𝜃𝜃 (𝑑𝑑𝐴𝐴 𝑥𝑥′ −𝑑𝑑𝐴𝐴 𝑥𝑥 )

I can show that for simulated networks drawn from 
MLE may be found from Equilibrium Expectation (EE):

The left part may be computed by Monte Carlo 
integrations, without time consuming MCMC simulation

𝜋𝜋(𝑥𝑥,𝜃𝜃)



If observed network xobs is large then one sample is enough
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But may be used also for small networks

New approaches for MLE

Very fast MLE !



MLE for empirical data
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How to apply this methodology for empirical data xobs ?
We can draw simulated data     so that ( ) ( )A A obsz x z x=

We have developed MCMC algorithm to solve this system of equation

x



MCMC to constrain the values of all the statistics

EE algorithm for empirical data



MoM (Snijders 2002) and MCMCMLE (Geyer CJ & Thompson  
1992) require many converged outputs of Metropolis-Hastings algorithm

EE algorithm does not need such outputs. Instead it generates one 
converged output

EE algorithm is similar to Metropolis-Hastings algorithm, but allows 
Monte Carlo simulation to be performed while constraining the values of 
statistics  zA(x) and in such a way that the EE condition is satisfied 

EE algorithm for empirical data



Networks statistics typical for social networks
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Snijders T.A., Pattison P.E., Robins G.L., Handcock M.S., New specifications for exponential 
random graph models, Sociological Methodology 36(1), 99-153 (2006)
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Node attributes

Tests and applications



With EE algorithm the estimation time grows with number of 
nodes N almost linear 

We use EE algorithm to estimate parameters of ERGMs
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Tests and applications

Snijders, Tom AB. Markov chain Monte Carlo estimation of exponential random graph 
models, Journal of Social Structure, 1-40 (2002) 
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Tests and applications. Biological networks

Stivala, A. D., Koskinen, J. H., Rolls, D. A., Wang, P., & Robins, G. L. (2016). Snowball sampling for 
estimating exponential random graph models for large networks. Social Networks, 47, 167-188.



Tests and applications. Biological networks

IFD  sampler: Byshkin M, Stivala A, Mira A, Krause R, Robins G, Lomi A, Auxiliary Parameter 
MCMC for Exponential Random Graph Models J. Stat. Phys. 165: 740-754 (2016)



Tests and applications. Biological networks

This research was supported by Melbourne Bioinformatics 
at the University of Melbourne, grant number VR0261



was a social network for language learning
104103 nodes and 2193083 ties

Zafarani and H. Liu. Social computing data repository at ASU, 2009 
Livmocha network datasets, konect.uni-koblenz.de

Output of EE algorithm with IFD sampler (in 12 hours)

0.6242

2.7917      

-19.531     

Tests and applications. Large  networks
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 Statistics is constrained to the observed values

With good scaling we can obtain MLE for large dependent data



Both convergence tests are passed

Networks with 104103 nodes and 2193083 ties
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Our convergence test
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t-ratio convergence test

Tests and applications. Large  networks

Snijders T, Journal of Social Structure (2002): 1-40



More presentations

- Complex Networks, March 20-24, 2017, Dubrovnik, Croatia
- Sunbelt INSNA Conference, May 30-June 4, 2017, Beijing, China
- Cambridge Networks Day, 13th June 2017, Cambridge, UK
- PASC17, June 26 - 28, 2017, Lugano, Switzerland
- International Conference on Monte Carlo Methods and 
Applications, July 3-7, 2017, Montreal, Canada
- International Conference on Computational Social Science,  July 
10-13, 2017, Cologne, Germany
- Third European Conference on Social Networks, September 26 to 
29,  2017, Mainz, Germany
- 2nd Australian Social Network Analysis Conference, 28-29 
November 2017, Sydney, Australia

The code will be available free of charge
www.sonarcenter.eco.usi.ch

http://www.sonarcenter.eco.usi.ch/


Hidden bonus slides



If on step t the chain is in state x what is the expected 
network statistics on the next step x′?

New approaches for MLE
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The expected network statistics: 
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The expectation must be taken with respect to P(𝑥𝑥 → 𝑥𝑥′,𝜃𝜃)

The expectation must be taken with respect to

The expected network statistics: 
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