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Outline

1. ERGM basics.

2. There appears to be a problem with inference on some
parameters.

3. What the problem is not.

4. New algorithms let us see the problem more clearly with larger
networks.

5. What the problem is, with help from a classic ERGM paper.

6. What might we do about it?
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Exponential random graph models (ERGMs)

Pr(X = x) =
1

κ
exp

(∑
A

θAzA(x)

)
where

I X = [Xij ] is a 0-1 matrix of random tie variables,

I x is a realization of X ,

I A is a subgraph configuration,

I zA(x) is the network statistic for configuration A,

I θA is a model parameter corresponding to configuration A,

I κ is a normalizing constant to ensure a proper distribution.
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Model configurations — structural

k-stars: useful for capturing degree distribution

k-triangles (AKT), k-2-paths (A2P): useful for modelling social circuit

dependence
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Model configurations — binary actor attributes

Activity ρ Interaction
(homophily) ρB
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Inference vs estimation

I Estimation is to estimate parameter values,

I with an associated estimate of the standard error.

I Inference is making an inference as to whether or not there is
a statistically significant effect (positive or negative).

I Even if the point estimates are not very accurate, if the
standard error estimates are reliable, inference will still be
sound,

I (at our chosen significance level, conventionally 5%).
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The problem appears using snowball sampling on large
networks
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The problem: very low power on some parameters
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What the problem is not

I There appears to be no problem with the Type I error rate:
inference is still “safe”, just with very low power.

I It is not specific to snowball sampling. Also happens with
“conventional” full network algorithms i.e. PNet, statnet
(Robbins-Monro, MCMLE (Geyer-Thompson), “Stepping”).

I It is not (just) because of the small AS parameter magnitude.
Also happens for larger values.

I It is not (just) because of a positive AS parameter. Also
happens for negative values (even with larger magnitude),
although it is not as bad.

I It is not specific to alternating k-star (AS). It also happens
with 2-star, 3-star, and 4-star in place of AS.

I Estimation with fixed density does not solve the problem
either.
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PNet estimates Type II error rate for different network sizes
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A closer look at the problem

By looking at the estimate bias and RMSE, and estimated
standard error for different network sizes, we will see that the bias
and RMSE in estimates for Edge and AS, unlike other parameters,
does not get smaller with larger networks.
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PNet estimates of canonical parameters for different sizes
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RMSE on PNet estimates
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Estimated standard error of PNet estimates
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The cause of the problem?

I It looks like there is error in the point estimates of Edge and
AS.

I It gets worse as network size increases.

I The estimated standard error then, correctly, is also larger.

I And hence we get a very high Type II error rate on those
parameters.
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Even larger networks

I With PNet, statnet, etc. estimating networks larger than
around 1000 nodes can be impractically slow.

I A new method called “Equilibrium Expectation” (Byshkin et
al.) is much faster and can easily handle networks of tens or
hundreds of thousands of nodes (or more).

I (”Efficient MCMC Estimation for Exponential Random Graph
Models”, Maksym Byshkin, Fri. June 2 09:20, BICC 310)

I The problem also occurs with this method, and the following
slides show the error in the Edge and AS parameters gets even
larger as the network size grows...
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EE estimates of canonical parameters for different sizes
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EE estimates of canonical parameters for larger networks
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RMSE on EE estimates of canonical parameters for larger
networks
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Estimated Std. Error on EE estimates for larger networks
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An important paper helps us find the root cause
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Canonical and mean-value parameterization

I The canonical (or “natural”) parameters are the ones we use
for inference.

I There is an alternative parameterization, the mean-value
parameterization, in which the parameters are just the
network sufficient statistics.

I There is a one-to-one strictly increasing mapping from the
canonical to mean-value parameterization (a general property
of exponential families).

I An MLE is unbiased in the mean-value parameter space by
construction.

I But because of this fact, and the strictly increasing mapping,
it is biased in the natural parameter space.
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Our estimates are unbiased in the mean-value parameter
space

I We can measure bias in the mean-value parameter space by
simulating networks from the estimated canonical parameters,
and comparing their sufficient statistics to those of the
original observed network.

I This was done in van Duijn, Gile, & Handcock (2009), but
only for small networks (faster computers and new algorithms
mean we can now estimate networks not practical in 2009),
and not using the alternating k-star parameter (or any kind of
star parameter).

I Repeating this on our estimates (PNet and, for large
networks, EE), we see they are unbiased in the mean-value
parameter space.

I And for this very reason, are biased in the natural parameter
space.
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PNet estimates of mean-value parameters for 1000 node
network
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EE estimates of mean-value parameters for 1000 node
network
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EE estimates of mean-value parameters for 5000 node
network
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PNet estimates of canonical parameters for 1000 node
network
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EE estimates of canonical parameters for 1000 node
network
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EE estimates of canonical parameters for 5000 node
network
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What to do about it?

It is already useful just to know to expect a very low inferential
power, and, for large enough networks, very large bias on the AS
parameter. But why is it only such a problem for Edge and AS?
And can we fix it?

I Bias correction, such as that described for maximum
pseudo-likelihood estimation in van Duijn, Gile, & Handcock
(2009).

I (“Bias-adjusted maximum likelihood estimation” has been
suggested by Hummel & Hunter following this idea, but seems
not to be published).

I “Normalized degree distribution” instead of Edge and
alternating k-star parameters (suggested by Maksym Byshkin;
work in progress).
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Hidden bonus slides
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Simulated network parameters

Attributes Edge (θL) AS AT A2P ρ ρB
50/50 -4.00 0.20 1.00 -0.20 0.20 0.50

Parameters of the simulated networks. The value in the Attributes
column shows the percentage of nodes which have, respectively,
the values of True and False for their binary attribute. For
networks with attributes, the ρ and ρB columns then show,
respectively, the activity and interaction parameter values.
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Simulated network descriptive statistics
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Simulated network sufficient statistics
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PNet fixed density estimates of canonical parameters for
different sizes

no Edge parameter
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RMSE on PNet fixed density estimates
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Estimated standard error of PNet fixed density estimates
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PNet estimates of canonical parameters for 500 node
network (AS = 0.4)
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Statnet MCMLE estimates of canonical parameters for 500
node network (AS = 0.4)
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Statnet “Stepping” estimates of canonical parameters for
500 node network (AS = 0.4)

0.0

2.5

5.0

7.5

10.0

−8 −4 0 4

Nc = 100, bias = 0.3461, RMSE = 1.937

% In CI = 97, FNR% = 49

c
o

u
n

t

θL

0

3

6

9

−2 −1 0 1

Nc = 100, bias = −0.2313, RMSE = 0.5644

% In CI = 97, FNR% = 86

c
o

u
n

t

AS

0

2

4

6

8

−0.24 −0.22 −0.20 −0.18 −0.16

Nc = 100, bias = 0.003518, RMSE = 0.01636

% In CI = 96, FNR% = 0

c
o

u
n

t

A2P

0.0

2.5

5.0

7.5

0.96 1.00 1.04

Nc = 100, bias = 0.005893, RMSE = 0.02555

% In CI = 99, FNR% = 0

c
o

u
n

t

AT

0

2

4

6

0.1 0.2 0.3

Nc = 100, bias = 0.003194, RMSE = 0.06048

% In CI = 95, FNR% = 3

c
o

u
n

t

ρ

0

2

4

6

8

0.3 0.4 0.5 0.6 0.7 0.8

Nc = 100, bias = 0.005072, RMSE = 0.09494

% In CI = 89, FNR% = 0

c
o

u
n

t
ρB

10 / 12



Normalized degree distribution (Maksym Byshkin)

I Let Dk be the number of nodes with degree k .

I Density L is a function of degree distribution: L = 1
2

∑
Dkk

I Normalized degree distribution D ′
k = Dk

L = 2Dk∑
Dkk

.

I And we can use the geometrically weighted degree statistic,
but with D ′

k instead of Dk , and not include the density
parameter in the model.
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Mapping from canonical to mean value parameterization

� with the usual 

�ous then <p - 1 is 

�6 (weakly). t must be showninuous functionsoft it follows that

sequence an 

ere in Rl, one can, 

First Properties 12 l 
in contradiction to the affine independence of t 1, ••• , t4• Choose a lJE(0,(d2 - d i)/5) and letJ 1 = { t: d 1 - lJ < t · e < d 1 + lJ}. Furthermore, let/be a non-negative function in C0(R4) which satisfies 

f(t) = 0, 
and 

f f(t)dn > 0.
J, 

Such f certainly exists. Let S1 denote the ( compact) support off. For n sufficiently large one has 
e

n 
·t = 1on{(

1
!:

1 
- e) ·t + e- r] � IOnl(d, + 2lJ), tESJ 

and hence 

By letting n ..... X> and employing (25). one obtains 
(26) I � lim inf an e16· 1<d, + 261

• 

In a similar way it may be shown that 
(27) I � Jim sup an elB.l(d, - 26)

_ 

(26), (27) and the inequality d 1 + 2<5 < d2 - 215 together imply ()" ..... 0. ... 
In cases where � is full and { P6 : ()Ee} is minimal, r will denote the mappingdefined on int e by 

r(O) = E0t

and '.! will stand for r(int 8). The mapping r is a one-to-one, both wayscontinuously differentiable mapping between the two open. connected sets int eand'.!; moreover, r is strictly increasing in the sense that 
(28) (8 - BJ(r(O) - r(O)) > o
for every pair of points 0. 0 in int e. It follows, in particular, that if e is open (i.e. �is regular) then � may be parametrized by the mapping r ..... Pi, (where r = r(O)).Such a parametrization is called a mean value parametrization. Besides canonical and mean value parametrizations of regular exponentialfamilies, also parametrizations which are, so to speak, a mixture of the two haveinterest. Consider a partition (0(11, 0(2)) of() and the similar partition (r< I). r<2>) of r.Observing that r = DK and applying Theorem 5.34 to K one finds that themapping 

O. Barndorrf-Nielsen. Information and Exponential Families in
Statistical Theory. John Wiley & Sons, Chichester, UK, 2014.
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