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Introduction

I Martin (2017) analyzed social networks of personalities from a
patient with Multiple Personality Disorder (MPD) [now known
as dissociative identity disorder (DID)].

I using the “dk-series” model (Orsini et al., 2015), a sequence
of nested network distributions of increasing complexity.

I One network contains a large “hollow ring” — a cycle with no
shortcuts so the shortest path is along the cycle.

I The other two networks however have much smaller largest
such cycles — smaller than expected under the dk-series
model.
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Data source

A. David, R. Kemp, L. Smith, and T. Fahy. Split minds: Multiple personality and schizophrenia. In P. W. Halligan
and J. C. Marshall, editors, Method in Madness: Case Studies in Cognitive Neuropsychiatry, chapter 7, pages
122-146. Psychology Press, Hove, UK, 1996
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“Patricia”

I “Patricia” is a patient diagnosed with Multiple Personality
Disorder described by David et al. (1996).

I She drew maps of her alternate personalities, with the alters
connected by lines.

I As noted by Martin (2017) the exact nature of what these
edges represent is obscure, but according to David et al. (1996):

Patricia illustrated the multiplication and branching
of her personality with diagrams ...

(David et al., 1996, p. 139)

It appears that certain personalities occupied a
central position in her mind and these in turn have
given rise to subsidiary personalities (as indicated by
the connecting lines).

(David et al., 1996, p. 136).
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Patricia’s 1990 network
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Patricia’s 1992 network
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Yellow nodes are in the “Sphere of the Blue Flame” and nodes
marked with a star are marked as Christian on Patricia’s original
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Patricia’s 1993 network
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What does it mean?

It would be hard to conceive of a single mind capable of
sustaining dozens of other minds, lives, and relationships,
leaving aside the question of whether or not such a feat is
intended.

(David et al., 1996, pp. 139-140)

The illusion of unity of consciousness is not exposed in
MPD but is repeated over and over again. One illusory
consciousness gives way (or joins) another. Each is a
coherent autonomous homonculus. It is like an illiterate
forger passing off dud bank notes of different
denominations but always with the word ”pound”
mis-spelled.

(David et al., 1996, p. 143)
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Freudian interpretation

I Without referring to Freud, David et al. (1996) refers to MPD
as “a means of dealing with social and interpersonal conflict”
that “becomes fossilised and embellished...” (David et al.,
1996, p. 143)

I Freud, famously, had the view, that, in relation to paranoia,

In every instance the delusional idea is maintained
with the same energy with which another,
intolerably distressing, idea is fended off from the
ego. Thus they love their delusions as they love
themselves. That is the secret.

(Freud, 1895/1950, pp. 211–212)

9 / 40



Martin’s interpretation

In many ways, this returns us to core intuitions of early
network analysts: that we are interested in some sort of
intertwining of lives, but we might be unable to specify a
single content to the nature of the ties involved. ...
Patricia’s maps presumably are indicating a more
fundamental connection, one perhaps as obscure as our
own strong feelings.

(Martin, 2017, p. 5)
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An alternative interpretation

I But is not “a single mind capable of sustaining dozens of
other minds, lives, and relationships” exactly (part of) what a
novelist (or playwright or screenwriter, or other fiction writer),
must have have, to some degree?

I The characters (“coherent autonomous homonculi”) in a work
of fiction are individual and coherent, but they perhaps have a
common hallmark, from the author.

I So (leaving aside any considerations as to how “real” MPD
alters are) it makes sense to to consider Patricia’s alters just
as we might consider fictional characters; they and their
relationships are not completely arbitrary or random, but
follow some schema which makes them meaningful.
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Teach Yourself Graph Theory in 60 Seconds!
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This graph has 7 cycles (one is Hamiltonian). 4 are chordless and
3 of those are also geodesic (and, in addition, convex).
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The cycle in red is geodesic (and so also chordless)
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The cycle in red is geodesic (and so also chordless)
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The cycle in red is geodesic (and so also chordless)
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The cycle in red is chordless but not geodesic
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The cycle in red is not chordless (and so not geodesic)
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The cycle in red is not chordless (and so not geodesic)
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The cycle in red is not chordless (and so not geodesic)
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This cycle is Hamiltonian.

19 / 40



Ring / Cycle

I Martin (2017) describes a “hollow ring” as “a cycle ... no pair
of [nodes of] which have a distance in the graph lower than
that in the cycle. (In other words, there are no “short cuts”
between nodes in the ring).” [p. 16]

I But in fact we can see that this is just the same as a
“geodesic cycle”.

I I prefer the term “geodesic cycle” which makes sense
mathematically given its definition, without confusing it with
other properties such as atomicity, and dates back to Negami
and Xu (1986).
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High school dating network (Bearman et al., 2004)

Figure by Mark Newman downloaded from http:

//www-personal.umich.edu/~mejn/networks/addhealth.gif
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Grey’s Anatomy sexual relations network
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Dolphin social network
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Zachary karate club network

The Instructor (Mr. Hi) is green and the President (John A.) is
purple.

24 / 40



Kapferer tailor shop network
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Lazega law firm friendship network

Nodes are colored according to the office the person works at.
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High school friendship network

Male students are blue, female pink (one unknown is gray). 27 / 40



Network descriptive statistics

Network N Components Mean Density Clustering Assortativity Mean
degree coefficient coefficient path length

Patricia 1990 14 1 2.57 0.19780 0.40000 -0.25000 2.96
Patricia 1992 85 2 2.21 0.02633 0.10345 -0.46399 8.41
Patricia 1993 107 5 2.13 0.02010 0.10266 -0.37400 8.88
Grey’s Anatomy 44 4 2.09 0.04863 0.00000 -0.22567 3.49
Dolphins 62 1 5.13 0.08408 0.30878 -0.04359 3.36
Zachary karate club 34 1 4.59 0.13904 0.25568 -0.47561 2.41
Kapferer tailor shop 39 1 8.10 0.21323 0.38506 -0.18269 2.04
Law firm friendship 71 3 11.24 0.16056 0.44862 0.07948 2.19
High school friendship 134 3 6.06 0.04556 0.47540 0.28718 4.02
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Patricia 1990 geodesic cycle length distribution
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Patricia 1992 geodesic cycle length distribution
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Patricia 1993 geodesic cycle length distribution
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Grey’s Anatomy sexual relations network geodesic cycle
length distribution
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Dolphin social network geodesic cycle length distribution
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Zachary karate club network geodesic cycle length
distribution
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Kapferer tailor shop geodesic cycle length distribution
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Lazega law firm friendship geodesic cycle length
distribution
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High school friendship geodesic cycle length distribution
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Results

I Using a different model (ERGM rather than dk-series), and
considering not just the largest geodesic cycle size but the
distribution of geodesic cycle sizes,

I I confirm the results of Martin (2017) that Patricia’s 1990
network has significantly larger geodesic cycle than expected,
but that the largest geodesic cycle in the 1992 and 1993
networks is significantly smaller than expected.

I Further, in the latter two networks, in general geodesic cycles
of size 4 or more are under-represented.

I But in a selection of other (fictional and real) social networks,
the observed cycle length distribution is a good match to that
expected from an ERGM model.

I So it appears there is something “special” about Patricia’s
networks in this respect.

38 / 40



Discussion

I But why is this? Perhaps because Patricia’s networks are the
product of a a single mind (multiple personalities aside), and
hence reflect her (spatial) idea of what a network “should”
look like.

I While the other networks are either empirical, or (the sole
fictional network, Grey’s Anatomy) the product of multiple
creators (over an extended period).

I That ERGMs, explicitly on their local (social circuit)
assumption, reproduce well the (non-local) geodesic cycle size
distribution is an encouraging confirmation that local
interactions really do produce these observed global structures.
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Unpublished work

I As of November 2019 this is unpublished work.

I However these slides will be available from my website after
the talk (ASNAC 2019, 28–29 November, Adelaide, South
Australia).

I Details including methods, graph theoretic definitions, ERGM
models, and full references are in the “hidden bonus slides”
after this one.

I https://sites.google.com/site/alexdstivala/home/

conferences
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Hidden bonus slides
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Introduction (2)

I Martin (2017) concludes from this that the logic of these
networks is spatial, the long path lengths indicate a “large
world” and the bias against large “hollow rings” is indicative
of a belief that a chain of relationships that “goes away” in
space is not going to “return”.

I In summary, he concludes with the hypothesis that the root
schema for social networks is local and spatial.

I I will re-examine these networks using ERGMs, make precise
the “hollow ring” definition, and compare the empirical
distribution of such cycle sizes with those expected under
ERGM models of the networks.

I I will repeat this with several other empirical (human and
animal social networks and fictional character networks)
networks and compare the results with those for the MPD
networks.
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Data sources
“Patricia” David et al. (1996); Martin (2017). I manually coded

the networks from Patricia’s hand drawings as
reproduced in David et al. (1996).

Grey’s Anatomy Lind (2012); Weissman (2019); Leavitt and Clark
(2014). ERGM models also based on those described
in the citations.

Dolphins Lusseau et al. (2003), downloaded from http:

//www-personal.umich.edu/~mejn/netdata/.
Lazega law firm Lazega and Pattison (1999); Lazega (2001);

Snijders et al. (2006) downloaded from
http://moreno.ss.uci.edu/data.html.

Zachary karate club Zachary (1977) via statnet.
Kapferer tailor shop Kapferer (1972) via statnet. ERGM models

are replications of those in Hummel et al. (2012).
High school friendship Mastrandrea et al. (2015) downloaded from

http://www.sociopatterns.org/datasets/

high-school-contact-and-friendship-networks/.
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Halligan & Marhsall (Eds.) 1996
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“Map” drawn by Patricia of her alters, 1990
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“Map” drawn by Patricia of her alters, 1992
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“Map” drawn by Patricia of her alters, 1993
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“Small world” statistics

Network Ng Lg Lr Ll C∗
g C∗

r C∗
l ω SWI

Patricia 1990 14 2.96 2.66 3.10 0.47619 0.09690 0.37262 -0.377 0.464
Patricia 1992 62 8.99 4.83 8.46 0.12769 0.02325 0.16736 -0.226 —
Patricia 1993 66 9.73 5.27 9.93 0.09411 0.02000 0.14853 -0.092 0.025
Grey’s Anatomy 31 3.58 3.40 3.75 0.00000 0.04984 0.12373 0.949 —
Dolphins 62 3.36 2.71 4.22 0.25896 0.09749 0.53410 0.321 0.211
Zachary karate club 34 2.41 2.25 2.30 0.57064 0.35880 0.56298 -0.079 —
Kapferer tailor shop 39 2.04 1.99 2.03 0.45803 0.32829 0.42702 -0.099 —
Law firm friendship 69 2.19 2.01 2.14 0.49778 0.26779 0.53389 -0.011 —
High school friendship 128 4.02 2.83 5.90 0.54006 0.06319 0.64029 -0.140 0.505

I Small world coefficient ω (Telesford et al., 2011) ranges from -1 to 1, with values close to -1 indicating the
graph has lattice characteristics, values close to 1 indicating random graph characteristics, and values near
0 indicating small world characteristics.

I Small world index (SWI) (Neal, 2017) ranges from 0, when the network displays neither of the small-world
characteristics (relatively small shortest path lengths and relatively high clustering coefficient), to 1 when it
has both characteristics.
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Some graph theory definitions (always undirected graphs
here)

I A walk is a sequence of edges joining a sequence of vertices.

I A trail is a walk in which the edges are distinct.

I A circuit is non-empty trail in which the first and last vertices
are repeated.

I A cycle (or simple circuit) is a circuit where only the first
and last vertices are repeated.

I An induced subgraph of a graph is a subgraph formed by a
subset of vertices of the graph and all edges connecting
vertices in that subset.

I An induced path in G is a path that is an induced subgraph
of G , i.e. any two adjacent vertices in the path are connected
by an edge in G and any two non-adjacent vertices in the
path are not connected by an edge in G .
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Chordless cycles

I A chord is an edge joining two non-adjacent nodes in a cycle.

I A chordless cycle is a cycle in which no two vertices of the
cycle are connected by an edge that is not itself in the cycle,
i.e. a cycle with no chords.

I Also known as an induced cycle as (just as for an induced
path) in a chordless cycle in G , any two adjacent vertices in
the cycle are connected by an edge in G and any two
non-adjacent vertices in the cycle are not connected by an
edge in G .

I Also sometimes called a hole.

I The terms from the this and the previous slide are well-known,
e.g. you can find them in Wikipedia, Wolfram MathWorld,
computer science and discrete mathematics textbooks.
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Geodesic or isometric cycles

I A geodesic cycle (Li and Shi, 2018) or isometric cycle
(Lokshtanov, 2009) is a cycle where the length of the shortest
path between any pair of vertices along the cycle is equal to
the length of the shortest path between them in the graph:

dG (u, v) = dC (u, v)

where dG (u, v) is the distance (length of shortest path, i.e.
geodesic) between u and v in G .

I This is not such a well-known (textbook) concept, but this
definition of “geodesic cycle” goes back to Negami and Xu
(1986).

I Note that although finding the largest cycle and largest
chordless cycle in a graph are both NP-hard problems (Garey
and Johnson, 1979), finding the largest geodesic (isometric)
cycle is in P (Lokshtanov, 2009).
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Convex cycles I

I A cycle C of a graph G is (geodetically) convex if for any
pair of distinct vertices u, v ∈ V (C ),

dC (u, v) < dG−C (u, v)

I i.e. the distance along the cycle between any pair of vertices
in the cycle is less than the distance between them in the
graph excluding the cycle.

I This is not such a well-known concept, but is described in
Hellmuth et al. (2014).

I Geodetic (or geodesic) convexity in graphs (more generally,
not necessarily of cycles) had earlier been discussed in Batten
(1983); Farber and Jamison (1986); Farber (1987) [not cited
by Hellmuth et al. (2014)].
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Convex cycles II

I Note that these papers on “isometric”, “geodesic”, or
“convex” cycles do not cite each other or mention any
equivalent definitions with different names, although Hellmuth
et al. (2014) also discusses isometric subgraphs and isometric
cycles:

I A subgraph H of G is isometric if dH(u, v) = dG (u, v) holds
for all u, v ∈ V (H).

I H is a (geodetically) convex subgraph of G iff for all
u, v ∈ V (H), all shortest uv -paths P ∈ PG [u, v ] are contained
in H.

I Convex implies isometric (Hellmuth et al., 2014, p. 125).
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Atomic cycles

I An atomic cycle is defined by Gashler and Martinez (2012)
as a generalization of a chordless cycle:

I An n-chord is a path of length n connecting two vertices in a
cycle, where n is less than the length of the shortest path in
the cycle between the vertices.

I An atomic cycle is a cycle with no n-chords.

I We can see that this coincides with the definition of a
geodesic cycle.

I “Atomic cycle” with its definition above by Gashler and
Martinez (2012) is referred to in the Wikipedia entry for
“Induced path” but neither that entry nor Gashler and
Martinez (2012) refer to (geodetic) convexity or “convex
cycle”, “isometric cycle”, “geodesic cycle”, or any of the
literature on those concepts.
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Chordless and geodesic cycles

I Every geodesic cycle is chordless.

I But not every chordless cycle is geodesic.

I A chordless cycle is an induced cycle. Indeed a cycle is
chordless if and only if it is an induced cycle.
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What’s the frequency, Kenneth?

In this work:

I Cycles and chordless cycles are counted using the CYPATH
program (Uno and Satoh, 2014).

I Geodesic cycles (atomic cycles) are counted using the
algorithm of Gashler and Martinez (2012) implemented in the
Waffles machine learning toolkit (Gashler, 2011).
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Expected number of cycles in a random graph

I The expected number of cycles of length k (3 ≤ k ≤ n) in an
Erdős-Rényi random graph G (n, p) is

E[γn(p, k)] =

(
n

k

)
(k − 1)!

2
pk

(Erdős and Rényi, 1960; Takács, 1988)

I On the probability ( Luczak, 1991) and size of the largest
chordless cycle in a random graph see  Luczak (1993) [see also
citations therein].

I Geodesic cycles in random graphs were studied in Benjamini
et al. (2011). For the length of longest geodesic (isometric)
cycles in random graphs see Li and Shi (2018) and for finding
the longest such cycle in a graph, Lokshtanov (2009) [the
former does not cite the latter].
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ERGM introduction

I A way of modeling network ties based on structure and
attributes.

I Given an observed network, we estimate parameters for local
effects, such as closure (clustering), activity (greater tendency
to have ties), homophily, etc.

I The sign (positive for the effect occurring more than by
chance, negative for less than by chance) and significance tell
us about these processes, taking dependency into account.

I I.e. it tells us about the process occurring significantly more
or less than by chance, given all the other effects in the model
occurring simultaneously.
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ERGM details

I All ERGMs here were estimated with the statnet software
(Handcock et al., 2008; Hunter et al., 2008; Handcock et al.,
2016a,b), and convergence and goodness-of-fit found to be
acceptable using the statnet MCMC diagnostics and gof
functions.

I Unless otherwise noted, the statnet default MCMLE algorithm
was used for estimation.

I For each network the “best” model (using AIC, BIC, and
goodness-of-fit plots) was selected, and 100 networks
simulated from that model using statnet.

I Geodesic cycle length distributions were computed from these
simulated networks.
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Patricia 1990 ERGM

Effect Model 1 Model 2 Model 3
Edges −2.023 (0.507)∗∗∗ −2.030 (0.503)∗∗∗ −2.391 (0.669)∗∗∗

GWESP 0.697 (0.341)∗ 0.710 (0.355)∗ 0.861 (0.505)
Degree 2 1.029 (0.573)
Degree 2 – 3 1.006 (0.568)
Degree 3 1.501 (0.584)∗

AIC 90.62 90.61 84.12
BIC 98.16 98.14 91.65

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWESP α parameter is fixed at 0.
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Patricia 1992 ERGM

Effect Model 1 Model 2 Model 3
Edges −4.588 (0.311)∗∗∗ −6.047 (0.561)∗∗∗ −8.392 (0.775)∗∗∗

GWDEGREE 1.397 (0.503)∗∗ 1.908 (0.560)∗∗∗ 1.838 (0.572)∗∗

GWESP 0.793 (0.173)∗∗∗ 0.764 (0.178)∗∗∗ 0.608 (0.177)∗∗∗

Activity Christian 0.734 (0.196)∗∗∗ 0.772 (0.217)∗∗∗

Homophily Christian 0.377 (0.205) 0.305 (0.215)
Activity Integrated 0.232 (0.310) 0.150 (0.331)
Homophily Integrated 0.427 (0.350) 0.290 (0.380)
Activity Sphere 0.646 (0.200)∗∗

Homophily Sphere 2.744 (0.513)∗∗∗

AIC 854.40 843.20 782.60
BIC 872.90 886.40 838.20

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWDEGREE decay parameter is fixed at 0.5 and the GWESP α parameter is fixed at 0.
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Patricia 1993 ERGM

Effect Model 1 Model 2 Model 3 Model 4
Edges −4.941 (0.282)∗∗∗ −6.609 (0.470)∗∗∗ −9.914 (0.869)∗∗∗ −10.169 (0.901)∗∗∗

GWDEGREE 1.501 (0.443)∗∗∗ 2.384 (0.547)∗∗∗ 2.314 (0.550)∗∗∗ 2.249 (0.538)∗∗∗

GWESP 0.870 (0.163)∗∗∗ 0.835 (0.168)∗∗∗ 0.656 (0.169)∗∗∗ 0.643 (0.172)∗∗∗

Activity Christian 0.708 (0.190)∗∗∗ 0.747 (0.203)∗∗∗ 0.789 (0.203)∗∗∗

Activity Integrated 0.540 (0.243)∗ 0.507 (0.258)∗ 0.580 (0.247)∗

Homophily Christian 0.473 (0.203)∗ 0.453 (0.205)∗ 0.512 (0.214)∗

Homophily Integrated 0.725 (0.252)∗∗ 0.670 (0.260)∗∗ 0.828 (0.271)∗∗

Activity Sphere 0.660 (0.192)∗∗∗ 0.729 (0.194)∗∗∗

Homophily Sphere 3.611 (0.730)∗∗∗ 3.600 (0.744)∗∗∗

Activity Behind 0.631 (0.377)
AIC 1094.00 1062.00 975.60 975.00
BIC 1114.00 1108.00 1035.00 1041.00

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWDEGREE decay parameter is fixed at 0.5 and the GWESP α parameter is fixed at 0.
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Grey’s Anatomy sexual contacts ERGM

Effect Model 1 Model 2 Model 3
Edges −1.442 (0.241)∗∗∗ −0.287 (0.564) −0.844 (0.636)
Homophily Sex −3.133 (0.718)∗∗∗ −3.428 (0.741)∗∗∗ −3.542 (0.732)∗∗∗

Degree 1 2.026 (0.500)∗∗∗ 3.533 (1.058)∗∗∗ 3.393 (1.000)∗∗∗

Degree 2 1.828 (0.911)∗ 1.743 (0.858)∗

Degree 3 0.988 (0.805) 0.983 (0.769)
Heterophily Birth year −0.132 (0.030)∗∗∗ −0.142 (0.032)∗∗∗

Attending – Attending 1.172 (0.508)∗ 1.085 (0.533)∗

Attending – Chief 1.137 (0.682) 1.004 (0.699)
Attending – Non-Staff −0.714 (0.642) −0.834 (0.648)
Attending – Nurse 0.109 (0.988) −0.058 (1.215)
Attending – Other 0.490 (0.789) 0.345 (0.874)
Attending – Resident 1.041 (0.502)∗ 1.004 (0.502)∗

Chief – Non-Staff −0.156 (1.183) −0.517 (1.316)
Chief – Resident 0.438 (1.080) 0.427 (1.096)
Intern – Intern 5.003 (1.904)∗∗ 4.611 (1.753)∗∗

Non-Staff – Non-Staff −1.289 (1.312) −1.431 (1.266)
Non-Staff – Resident 0.395 (0.593) 0.398 (0.604)
Nurse – Resident 1.147 (0.847) 1.554 (0.861)
Homophily Black 2.326 (0.754)∗∗

Homophily White 0.856 (0.392)∗

AIC 302.10 278.40 271.30
BIC 316.70 365.80 368.40

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.
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Dolphin social network ERGM

Effect Model 1 Model 2

Edges −0.821 (0.642) −1.553 (3.122)
GWDEGREE −2.148 (0.647)∗∗∗ −0.522 (3.260)
GWDSP (α = 0.7) −0.305 (0.067)∗∗∗

GWESP (α = 0.1) 0.984 (0.151)∗∗∗

GWDSP −0.250 (0.368)
GWDSP α 0.834 (0.669)
GWESP 0.630 (0.421)
GWESP α 1.082 (0.324)∗∗∗

AIC 1014.00 1014.00
BIC 1036.00 1047.00

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWDEGREE decay parameter is fixed at 0.5.
The “Stepping” algorithm (Hummel et al., 2012) was used for estimation.
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Lazega law firm friendship network ERGM

Effect Model 1

Edges −5.256 (0.317)∗∗∗

GWDEGREE 1.290 (0.874)
GWESP 0.597 (0.072)∗∗∗

GWESP α 1.398 (0.030)∗∗∗

Homophily GENDER 0.535 (0.103)∗∗∗

Homophily LAW SCHOOL 0.137 (0.130)
Homophily OFFICE 0.767 (0.111)∗∗∗

Homophily PRACTICE 0.485 (0.105)∗∗∗

Homophily STATUS 0.759 (0.104)∗∗∗

Heterophily AGE −0.019 (0.009)∗

Heterophily SENIORITY −0.019 (0.009)∗

AIC 1697.00
BIC 1761.00

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.
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Zachary karate club ERGM

Effect Model 1 Model 2

Edges −3.830 (0.405)∗∗∗ −2.095 (0.491)∗∗∗

GWDEGREE 5.566 (3.376) 0.988 (1.228)
GWESP (α = 0.5) 1.102 (0.211)∗∗∗ 0.358 (0.230)
Instructor 2.345 (0.527)∗∗∗

President 2.369 (0.543)∗∗∗

Faction abs. diff. 1 −0.246 (0.316)
Faction abs. diff. 2 −1.542 (0.492)∗∗

Faction abs. diff. 3 −2.179 (0.605)∗∗∗

Faction abs. diff. 4 −2.672 (0.626)∗∗∗

AIC 419.40 346.80
BIC 432.40 385.80

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWDEGREE decay parameter is fixed at 0.2.
Faction categorical attribute is coded from -2 (strongly Mr. Hi’s) to +2 (strongly John’s).
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Kapferer tailor shop ERGM

Effect Model 1 Model 2

Edges −3.082 (0.567)∗∗∗ −2.997 (0.523)∗∗∗

GWDEGREE 0.360 (0.935)
GWDSP (α = 0.25) −0.129 (0.051)∗ −0.130 (0.052)∗

GWESP (α = 0.25) 1.491 (0.343)∗∗∗ 1.436 (0.286)∗∗∗

AIC 732.70 732.20
BIC 751.10 746.00

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWDEGREE decay parameter is fixed at 0.25.
The “Stepping” algorithm (Hummel et al., 2012) was used for estimation.
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High school friendship ERGM

Effect Model 1 Model 2 Model 3
Edges −7.000 (0.570)∗∗∗ −8.542 (0.471)∗∗∗ −8.574 (0.457)∗∗∗

GWDEGREE 2.447 (0.385)∗∗∗ 3.062 (0.266)∗∗∗ 3.037 (0.259)∗∗∗

GWDEGREE decay 1.563 (0.113)∗∗∗

GWDSP (α = 0.5) −0.014 (0.031) 0.049 (0.023)∗ 0.047 (0.022)∗

GWESP 1.210 (0.079)∗∗∗

GWESP α 1.157 (0.029)∗∗∗

GWESP (α = 1.2) 1.344 (0.069)∗∗∗ 1.334 (0.067)∗∗∗

Homophily Class 1.057 (0.086)∗∗∗ 1.090 (0.084)∗∗∗ 1.081 (0.080)∗∗∗

Homophily Sex 0.171 (0.086)∗

AIC 2410.00 1937.00 1975.00
BIC 2459.00 1972.00 2018.00

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05. par

In models 2 and 3 the GWDEGREE decay parameter is fixed at 1.7.
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Sexual contact networks and 4-cycles I

I Bearman et al. (2004) propose a normative proscription
against 4 cycles (“don’t date your old partner’s current
partner’s old partner”), based on low number of 4-cycles in
their data relative to simulated networks.

I However Rolls et al. (2015) find in a more sophisticated
ERGM model of this data with acceptable GoF that small
numbers of 4-cycles are generated.

I The (much smaller) fictional Grey’s Anatomy sexual contact
network contains seven 4-cycles (of which all 7 are chordless
and 5 are geodesic) — violating this proposed proscription
could be because it makes compelling entertainment (Lind,
2012).

I Could not find a converged ERGM with a 4-cycle term for this
network to explicitly test for over- or under-representation
(neither could Lind (2012)).
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Sexual contact networks and 4-cycles II

I But note the model fits geodesic cycles of length 4 (and also
cycles and chordless cycles of length 4) well, similar to the
case for 4-cycles in Rolls et al. (2015) for the Bearman et al.
(2004) network.
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Future work I

I I wanted to compare to other fictional networks, with a single
author, specifically to test the hypothesis that such cases
would also produce anomalous geodesic cycle length
distributions like Patricia’s.

I However fitting ERGMs to these (the ones I have been able to
acquire anyway) is proving difficult.

I There is usually a main character, who is linked to most of the
other characters, which causes problems for ERGM.

I Note that this is not the case in Patricia’s networks:
“Patricia” is not the star of her own story in relation to her
alters.

I This can be handled by fixing the ties for that character, but I
have still not been able to get good ERGMs for the data I
have available (Les Misérables, David Copperfield, Anna
Karenina, Huckleberry Finn).
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Future work II

I This difficulty with ERGMs (having to only use data for which
a model fit can be obtained) is one reason Martin (2017)
gives for using dk-series instead (although I was able to fit all
3 Patricia networks well with ERGM, and more besides).

I ERGMs also have the advantage of allowing node attributes,
while dk-series is purely structural.

I Despite “little evidence of structural implications of these
characteristics” (Martin, 2017, p. 8) I found statistically
significant effects of some of them using ERGM (although the
resulting simulated networks are indeed not too different wrt
the geodesic cycle size distributions).
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Future work III

I It would also be interesting to test the geodesic cycle length
distribution of the Add Health high school romantic network
(Bearman et al., 2004). Although Rolls et al. (2015) have an
ERGM model of this, it is quite involved (multilevel, fixing
various ties), and the data are not publicly available (recoded
manually from the figure in Bearman et al. (2004)).
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High school friendship network (original, directed)
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High school friendship directed ERGM

Effect Model 1 Model 2

Edges −5.253 (0.240)∗∗∗ −5.295 (0.247)∗∗∗

GW out-degree 1.612 (0.751)∗ 1.516 (0.756)∗

GW in-degree 3.058 (1.209)∗ 2.915 (1.132)∗

Reciprocity 4.888 (0.332)∗∗∗ 5.055 (0.372)∗∗∗

GWDSP (α = 1.4) −0.121 (0.017)∗∗∗ −0.130 (0.017)∗∗∗

GWESP (α = 0.7) 1.156 (0.064)∗∗∗ 1.148 (0.063)∗∗∗

Homophily Class 1.378 (0.164)∗∗∗ 1.350 (0.166)∗∗∗

Reciprocity Class −1.722 (0.360)∗∗∗ −1.671 (0.364)∗∗∗

Homophily Sex 0.246 (0.168)
Reciprocity Sex −0.336 (0.364)

AIC 2571.00 2564.00
BIC 2633.00 2642.00

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05.

The GWIDEGREE and GWODEGREE decay parameters are fixed at 0.2 The MCMC burnin parameter is set to
1 × 105 and the MCMC interval parameter to 16384.
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