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The original paper
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The data

I Network of transfers of critically ill patients.

I Data derived from 2005 Medicare claims.

I 3308 hospitals with 47820 patient transfers.

I “nearly all hospitals participated in at least one transfer, and
4.5% of all critical care hospitalizations involved such a
transfer.”

I “Transfer” from hospital A to B defined as patient in A and
then in B on the same or next day.

I Transfers are then represented as a directed edge from A to B.
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Some general conclusions from the original paper

I Hospitals transfer patients to several other hospitals in a
complex network, not a simple hierarchy.

I It is not like a “hub-and-spoke” model explaining secondary
and tertiary care.

I Patients seem to move towards better resourced hospitals.

While the secondary / tertiary hospital model may have
some heuristic value, the implied hierarchy (in which
secondary hospitals send but do not receive patients and
tertiary hospitals receive but do not send patients) does
not appear to be present in our data. Instead, hospitals
appear to maintain diverse portfolios of other facilities to
which they transfer patients.

(Iwashyna et al. 2009)
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So the simple model is not right. What can we do?

I We can use network models to try to explain the complex
observed network structure.

I Network community detection and stochastic block modeling
to try to define classes (more complex than the secondary /
tertiary model) of hospitals in the network.

I Exponential random graph model (ERGM) to try to find the
processes that give rise to the observed network.

I And we will have to account for the effect of geography, as
distances between hospitals is clearly likely to be a significant
factor.
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Community structure and geography

I Network communities are groups of nodes in which the nodes
have more connections within the group than to nodes in
other groups.

I We can “see” these in the following network plots,

I and there are very many ways to find them algorithmically (we
will do some).

I But could the “communities” in this network be mostly be
due to geography...?
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Network plot by MATLAB “force” (Fruchterman-Reingold)
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Network plot by MATLAB “subspace” (Koren)
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Network plot in MATLAB according to geography
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Hospital Referral Regions
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“Hospital Transfer Regions”

I Hu, Y., Wang, F., & Xierali, I. M. (2018). Automated
Delineation of Hospital Service Areas and Hospital Referral
Regions by Modularity Optimization. Health Services
Research, 53(1), 236-255.

I This paper describes an automated, data-driven method to
define HRRs in order to overcome problems with the existing
Dartmouth ones.

I It does this by using community detection (Louvain) on a
network of patient-to-hospital flows (hospital and patient ZIP
codes as nodes).

I Similarly, by finding network communities in the patient
transfer network, we could define “Hospital Transfer Regions”
[or perhaps “interhospital referral regions” (Caimo, Pallotti &
Lomi, 2017)].
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Network communities found with Louvain method
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NMI with geographic regions is correlated with modularity
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Breaking free of geography
I So it looks like the clusters are highly correlated with

geography,
I which means they can be used to define “regions” in a

geographically meaningful sense.
I This was assumed implicitly in Hu et al. (2018) for using

Louvain method to define HRRs.
I But there is no a priori reason to assume network clusters are

geographical regions:
I E.g. imagine large hospitals in NY and LA exchanging patients

with each other more than any other (closer) hospitals.
I This hypothetical “region” consisting of tiny areas on both

coasts makes sense structurally but not geographically.
I The fact that clustering does not find such regions is because

in fact geography is a very significant factor: patients are
more likely to be transferred to nearby hospitals.

I But what would we find if we tried to exclude geography and
look at structural similarities only?
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Stochastic Block Model (SBM)

I A model of networks with unobserved classes (blocks) where
the probability of a tie between nodes depends only on the
classes to which they belong (Nowicki & Snijders, 2001).

I Much more general than community detection, which (by
definition) can only find assortative (i.e. community)
structure. SBM can also find disassortative, core-periphery,
and other structures.

I A large literature on this and the computationally difficult
problem of finding the blocks.

I We will use a sophisticated Bayesian method to find the
blocks: McDaid, A. F., Murphy, T. B., Friel, N., & Hurley, N.
J. (2013). Improved Bayesian inference for the stochastic
block model with application to large networks.
Computational Statistics & Data Analysis, 60, 12-31.
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Blocks found by SBM treating edges as undirected
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Finding space-independent communities

I Expert et al. 2011 “Uncovering space-independent
communities in spatial networks” PNAS 108(19):7663–7668

I Instead of using the Newman-Girvan null model (preserve node
degrees on average), use instead a null model that preserves
weighted average for an edge to exist at a given distance.

I The null model is similar to a “gravity” model: edge
probability between two nodes is proportional to the product
of the node “masses” (or importances) over function of the
distance between them.

I For “importance” we try both node degree (similar to
Newman-Girvan null model) or number of discharges (as a
proxy for hospital size).

I For the clustering algorithm we use a generalized Louvain
method and implement the Expert et al. (2011) null model in
the modularity matrix.
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Communities found with degree spatial null model (bin size
100 km)
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SBM (but not Degree-Corrected SBM) and spatial null
model communities are less related to geographical regions
than network communities are
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ERGM introduction

I A way of modeling network ties based on structure and
attributes.

I Given an observed network, we estimate parameters for local
effects, such as reciprocity, closure (clustering), activity
(sending more ties), popularity (receiving more ties),
preferential attachment, homophily, etc.

I The sign (positive for the effect occurring more than by
chance, negative for less than by chance) and significance tell
us about these processes, taking dependency into account.

I I.e. it tells us about the process occurring significantly more
or less than by chance, given all the other effects in the model
occurring simultaneously.
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Modeling the actual directed network

I We were unable to estimate ERGMs for this directed network
with existing methods (statnet, PNet, even with snowball
sampling).

I We were only able to estimate a simple model treating the
network as undirected with the new IFD sampler (Byshkin et
al. 2016 J. Stat. Phys. 165(4):740–754). But ignoring the
edge direction is too limiting as transfers are inherently
directional.

I But using the new “Equilibrium Expectation” algorithm
(Byshkin et al. 2018 Fast Maximum Likelihood estimation via
Equilibrium Expectation for Large Network Data. arXiv
preprint arXiv:1802.10311.), extended to apply to directed
networks, we can estimate ERGM parameters for this network
(in less than an hour).
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ERGM results (no geography, and with HRR and state)

Effect Model 1 Model 2
Arc −6.175

(−6.316,−6.034)
−14.914

(−15.058,−14.771)

AltInStars 0.371
(0.351,0.391)

0.244
(0.222,0.265)

AltOutStars −2.035
(−2.117,−1.954)

−2.364
(−2.444,−2.285)

Reciprocity 5.257
(5.189,5.326)

6.659
(6.569,6.748)

AltKTrianglesT 1.977
(1.955,1.999)

0.937
(0.919,0.956)

AltKTrianglesC −0.640
(−0.654,−0.626)

−0.383
(−0.395,−0.371)

ContinuousSender log discharges −0.142
(−0.149,−0.135)

0.309
(0.297,0.321)

ContinuousReceiver log discharges 0.317
(0.312,0.322)

0.837
(0.830,0.843)

Diff log discharges −0.287
(−0.300,−0.275)

0.124
(0.104,0.144)

Sender teaching hospital −0.293
(−0.351,−0.234)

−0.472
(−0.531,−0.413)

Receiver teaching hospital 0.506
(0.487,0.526)

0.621
(0.596,0.645)

Interaction teaching hospital −0.071
(−0.135,−0.006)

−0.150
(−0.223,−0.078)

Matching hrr — 2.353
(2.330,2.376)

MatchingReciprocity hrr — −1.929
(−1.989,−1.869)

Matching state — 3.705
(3.660,3.751)

MatchingReciprocity state — −3.767
(−3.857,−3.678)

logGeoDistance — —
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Model interpretation (1,2) – structural

I Some hospitals receive patients from many hospitals, but there
tend not to be hospitals that send patients to many hospitals.

I There is a tendency for reciprocity.
I There is a tendency for transitive closure, but against cyclic

closure:
I If hospital A sends patients to hospitals B and C, then it is

likely that hospital B also sends patients to C (or C to B).
I But if hospital A sends patients to hospital B, and B to C,

then it is unlikely that C also sends patients to A: i.e.
generalized exchange is unlikely.

Path closure

AT-T

 

Cyclic closure

AT-C

 

23 / 28

Model interpretation (1,2) — attributes and regions

I Teaching hospitals are less likely to send patients and more
likely to receive them. And patients are less likely to be
transferred between teaching hospitals (than from a teaching
to a non-teaching hospital).

I (Using number of discharges as proxy for hospital size), larger
hospitals are much more likely to receive transferred patients.

I When geography included, larger hospitals are also more likely
to send patients. But this is reversed if geography is not taken
into account: it looks like larger hospitals are less likely to
send patients!

I Similarly transfers are more likely between hospitals of
different sizes, but this is reversed if no geographical
information is included.

I Transfers are more likely within states and within HRRs.

I However reciprocity within (rather than between) states or
HRRs is less likely.
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ERGM results (include geographical distance)

Effect Model 3 Model 4
Arc −10.711

(−10.869,−10.554)
−6.122

(−6.245,−5.999)

AltInStars 0.161
(0.136,0.187)

0.103
(0.083,0.122)

AltOutStars −2.918
(−2.989,−2.847)

−4.057
(−4.125,−3.989)

Reciprocity 5.464
(5.364,5.564)

1.222
(1.183,1.261)

AltKTrianglesT 0.715
(0.697,0.732)

0.925
(0.905,0.946)

AltKTrianglesC −0.441
(−0.453,−0.429)

−0.556
(−0.572,−0.541)

ContinuousSender log discharges 0.501
(0.491,0.511)

0.723
(0.719,0.727)

ContinuousReceiver log discharges 1.052
(1.047,1.057)

1.039
(1.037,1.041)

Diff log discharges 0.296
(0.277,0.315)

0.387
(0.378,0.395)

Sender teaching hospital −0.558
(−0.611,−0.505)

−0.665
(−0.710,−0.620)

Receiver teaching hospital 0.493
(0.465,0.521)

0.316
(0.295,0.337)

Interaction teaching hospital −0.439
(−0.505,−0.373)

−0.569
(−0.628,−0.511)

Matching hrr 1.313
(1.281,1.344)

—

MatchingReciprocity hrr −1.781
(−1.844,−1.717)

—

Matching state 2.164
(2.116,2.213)

—

MatchingReciprocity state −3.435
(−3.536,−3.333)

—

logGeoDistance −0.982
(−0.993,−0.971)

−1.529
(−1.536,−1.521)
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Model interpretation (3,4)

I Now the (logarithm of) geographical distance between
hospitals is included.

I This parameter is negative: patient transfers are less likely
between more distant hospitals.

I This is in addition to patient transfers being more likely within
the same state and within the same HRR.

I But now it seems that the negative interaction parameter for
teaching hospitals is no longer significant (not well
converged): we can no longer conclude that transfers between
teaching hospitals are less likely than those between teaching
and non-teaching hospitals.
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Limitations and future work

I The validity of “hospital transfer regions” should be assessed
with various indices as in Hu et al. (2018) for HRRs (but
would need different ones for transfers not referrals).

I We do not have thorough Goodness-of-Fit tests when using
the new ERGM estimation algorithm on large (directed)
networks. More method development is required here.

I We are also subject to all the limitations of the original data:
it is derived from Medicare only, for a single year, and only
includes transfers between critical care hospitalizations (see
Iwashyna et al. 2009).

I Some more information about hospital organization form,
ownership, size, and performance may be available by
matching this data to publicly available US Government
Medicare data, which would allow models with more
attributes to be constructed.
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Hidden bonus slides
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Network plot on map of North America (using R)
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In- and out-degree distributions are consistent with both
power law and log-normal distributions
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Distribution of the number of discharges is consistent with
both power law and log-normal distributions
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Degree is correlated with number of discharges (in- more
so than out-degree)
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Bonacich alpha Centrality is correlated with number of
discharges
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y = 0.65 + 0.00024 ⋅ x,  r2 = 0.375,  p = 0

0

5

10

15

20

0 10000 20000 30000 40000
Number of discharges

B
on

ac
ic

h 
al

ph
a 

ce
nt

ra
lit

y

6 / 42

Distribution of the number of discharges is consistent with
both power law and log-normal distributions
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Distribution of transfer distances and hospital distances
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Patient transfer distances are not power law
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Using the statistical tests described by Clauset et al. (2009) this

distribution is not consistent with a power law distribution (p < 0.01).
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The network and all census division subnetworks are
small-world

Network N Lg Lr Ll C∗
g C∗

r C∗
l SWI

USA 3308 5.15 3.74 189.95 0.438 0.003 0.653 0.664
EastSouthCentral 285 3.91 2.68 17.31 0.510 0.029 0.646 0.713
Pacific 428 4.26 3.09 30.15 0.377 0.017 0.627 0.566
Mountain 204 3.93 2.86 15.88 0.440 0.031 0.612 0.646
WestSouthCentral 437 3.69 2.92 27.17 0.462 0.018 0.643 0.687
NewEngland 156 2.80 2.38 9.37 0.516 0.053 0.648 0.733
SouthAtlantic 572 4.03 2.92 32.63 0.492 0.015 0.653 0.719
EastNorthCentral 519 3.98 2.94 30.90 0.464 0.016 0.649 0.681
WestNorthCentral 284 3.82 3.00 21.54 0.402 0.023 0.616 0.611
MidAtlantic 413 3.25 2.62 20.73 0.495 0.024 0.666 0.709

I All networks are small-world according to the S∆ significance test of Humphries & Gurney (2008).

I Small World Index (SWI) (Neal 2017) ranges from 0 to 1.

I Lg is the average shortest path length of the network

I C∗
g is its clustering coefficient.

I Lr and C∗
r are, respectively, the average shortest path length and clustering coefficient for an Erdős-Renyi

random graph with same size and mean degree.

I Ll and C∗
l are, respectively, the mean path length and clustering coefficient for a ring lattice graph with

the same size and mean degree.
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SBM structure examples
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Community detection results (nodes with no HRR
removed)

Method Dir. We. # com. Modularity State NMI Div. NMI HRR NMI Time (m)
Louvain N Y 45 0.92 0.82 0.68 0.76 0.00
Fast greedy N Y 46 0.92 0.81 0.65 0.76 0.00
Walktrap N Y 118 0.90 0.79 0.62 0.83 0.01
Edge betweenness N Y 35 0.87 0.79 0.70 0.69 29.16
Louvain N N 31 0.87 0.77 0.69 0.69 0.00
Edge betweenness N N 33 0.86 0.79 0.70 0.69 15.03
Walktrap N N 52 0.85 0.80 0.67 0.73 0.01
Infomap Y Y 197 0.85 0.78 0.58 0.87 0.02
Infomap N Y 251 0.84 0.77 0.56 0.90 0.02
Leading eigenvector N Y 57 0.82 0.72 0.58 0.69 0.03
Fast greedy N N 24 0.80 0.66 0.59 0.56 0.00
Infomap N N 121 0.80 0.81 0.62 0.85 0.03
Label propagation N N 120 0.78 0.80 0.62 0.84 0.00
Infomap Y N 145 0.77 0.79 0.60 0.84 0.02
Label propagation N Y 465 0.71 0.72 0.52 0.88 0.00
Leading eigenvector N N 16 0.40 0.29 0.30 0.26 0.00
Edge betweenness Y N 1629 0.20 0.55 0.39 0.65 4.25
Edge betweenness Y Y 1656 0.19 0.55 0.39 0.65 6.29
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Blocks found by SBM with directed arcs
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SBM (directed) block 18 consists of 5 high in-degree
hospitals in the Chicago area
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Empirical block matrix for SBM with undirected edges
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Empirical block matrix for SBM with directed arcs
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Blocks found by SBM with directed and weighted arcs
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Empirical block matrix for SBM with directed weighted
arcs
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Degree-Corrected Stochastic Block Model

I We used a “standard” SBM (albeit with a very sophisticated
Bayesian estimation method). But perhaps a
“degree-corrected” SBM (Karrer & Newman 2011) would give
(more) interesting results, by using empirical degree
distribution as null model so blocks are not created based on
node degree.

I So we used the DCSBM (implemented for undirected
networks only) with k = 32, the same number of blocks found
by the Bayesian SBM (DCSBM does not estimate the number
of blocks).

I It looks like the DCSBM basically finds community structure
similar to modularity maximization, corresponding to
geography...
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Blocks found by Degree-Corrected SBM with k = 32
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DCSBM block matrix shows assortative (community)
structure
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SBM assigns some blocks apparently according to degree
heterogeneity
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DCSBM by construction assigns blocks independent of
node degrees
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Spatial null model generalized Louvain method results

Importance Binsize (km) Modularity # communities

Size 5 0.63 181
Size 10 0.63 182
Size 50 0.65 159
Size 100 0.66 143
Degree 5 0.70 43
Degree 10 0.70 38
Degree 50 0.71 38
Degree 100 0.72 36
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Spatial null model community degree distributions
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Model configurations — structural

Alternating k-stars: useful for capturing degree distribution

Popularity spread

Alt. in-star

AinS

Activity spread

Alt. out-star

AoutS

Alternating k-triangles (AT): useful for modeling social circuit dependence

Path closure

AT-T

 

Cyclic closure

AT-C
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Model configurations — categorical attributes

Matching Matching reciprocity

Mismatching Mismatching reciprocity
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ERGM results (removing unconverged Interaction teaching)

Effect Model 5 Model 6
Arc −10.730

(−10.873,−10.586)
−6.147

(−6.282,−6.012)

AltInStars 0.167
(0.141,0.192)

0.115
(0.093,0.137)

AltOutStars −2.921
(−2.988,−2.854)

−4.037
(−4.103,−3.970)

Reciprocity 5.499
(5.396,5.601)

1.236
(1.197,1.276)

AltKTrianglesT 0.713
(0.696,0.731)

0.919
(0.899,0.938)

AltKTrianglesC −0.432
(−0.444,−0.420)

−0.543
(−0.558,−0.527)

ContinuousSender log discharges 0.499
(0.490,0.509)

0.720
(0.716,0.724)

ContinuousReceiver log discharges 1.053
(1.049,1.058)

1.040
(1.038,1.042)

Diff log discharges 0.306
(0.287,0.325)

0.401
(0.392,0.409)

Sender teaching hospital −0.771
(−0.808,−0.734)

−0.961
(−0.997,−0.924)

Receiver teaching hospital 0.391
(0.373,0.408)

0.195
(0.170,0.219)

Interaction teaching hospital — —
Matching hrr 1.306

(1.288,1.325)
—

MatchingReciprocity hrr −1.762
(−1.816,−1.707)

—

Matching state 2.175
(2.130,2.221)

—

MatchingReciprocity state −3.467
(−3.565,−3.370)

—

logGeoDistance −0.975
(−0.980,−0.971)

−1.523
(−1.536,−1.509)
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ERGM estimation attempts

I Could not estimate network at all using PNet.

I Also could not get estimations to work with snowball samples.

I Using statnet (even new “stepping” algorithm), could not
estimate whole network, and only ended up with converged
estimations for 4/9 census divisions with MCMC.burnin=1e07
and took between 17 and 78 hours.

I The first successful estimation for whole network was using
IFD sampler, but only implemented for undirected networks so
limited usefulness.
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statnet model for New England census division

Effect Estimate std. errror p-value
A2P-T(2.00) [gwdsp(ln(2))] 0.0054 0.0141 0.70125

AKT-T(2.00) [gwesp(ln(2))] 0.6699 0.0631 < 1 × 10−04 ***

Edge −6.3790 0.2442 < 1 × 10−04 ***

gwidegree −1.6636 0.2357 < 1 × 10−04 ***

gwodegree 4.2110 0.4939 < 1 × 10−04 ***

mutual 4.7064 0.5091 < 1 × 10−04 ***

mutual.hrr −1.5377 0.3317 < 1 × 10−04 ***
mutual.state −1.6585 0.5294 0.00174 **

mutual.teaching hospital −1.6400 0.3935 < 1 × 10−04 ***

nodeicov.teaching hospital 1.2164 0.1443 < 1 × 10−04 ***

nodematch.hrr 1.1058 0.1149 < 1 × 10−04 ***

nodematch.state 1.7341 0.1475 < 1 × 10−04 ***
nodematch.teaching hospital 0.1075 0.1532 0.48279

nodeocov.teaching hospital −0.7591 0.1907 < 1 × 10−04 ***
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Interpretation of statnet results

I There is centralization on in-degree and not on out-degree,
consistent with the overall model. (See Hunter 2007 Soc.
Netw. 29:216–230 and Levy 2016 J. Open Source Softw.
1(3):36 for interpretation of gwidegree and gwodegree
parameters).

I Consistent with models 2–4 (geographical information
included), positive overall reciprocity parameter, but negative
within HRR and state.

I And also homophily on region (HRR and state) i.e. transfers
more likely within than between these regions.

I Consistent with overall models, teaching hospitals are less
likely send patients and more likely to receive them.
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Statnet models for other census divisions

I The other 3 census divisions that we obtained converged
models for (Mountain, WestNorthCentral, EastSouthCentral)
have similar results.

I Only significant differences:
I Mountain, EastSouthCentral and WestNorthCentral have

significant negative A2P-T (not significant in New England).
I Mountain teaching hospital reciprocity is significant and

negative (consistent with overall models); not significant in the
other converged statnet census division models.
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statnet goodness-of-fit for New England
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Lomi & Pallotti (2012) “Relational collaboration among
spatial multipoint competitors.”

I Interhospital patient transfer network of 13 178 patients
between 91 hospitals in Lazio region of Italy (includes Rome)
in 2003.

I Model includes:
I Patient pool overlap, “diffuse competition”, geographical

distance, LHU.
I size, occupancy rate, case mix index, complementarity,

performance index, organizational form.

I Estimation using MCMLE.

34 / 42

Lomi & Pallotti 2012 ERGM results
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Comparing results with Lomi & Pallotti 2012 (1)

I No significant centralization effects here; unlike our models of
US network which find centralization on in-degree and against
centralization on out-degree.

I Both find significant positive path closure but negative cyclic
closure, just as we did.

I Both also find overall positive reciprocity.
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Comparing results with Lomi & Pallotti 2012 (2)

I Hospital attributes:
I Both show regional homophily effects (HRR and LHU

respectively).
I When geography is included, we find heterophily on size

(num. discharges) but Lomi & Pallotti found homophily on
size (num. employees).

I We did not have data on organization form, occupancy rate,
case mix, complementarity, performance index or patient pool
overlap / competition to compare.
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Caimo, Pallotti & Lomi (2017) “Bayesian exponential
random graph modelling of interhospital patient referral
networks”

I Interhospital patient transfer network of total 16 557 patients
between 110 hospitals in Lazio region (12 Local Health Units
[LHUs]) of Italy for 2007.

I Model includes:
I number of beds
I occupancy rate
I average length of stay
I case mix index
I Organizational form (LHU / trust / research / classified /

private)
I Jaccard distance between all hospitals in space of all clinical

specialties
I geographical distance between hospitals

I Estimation using Bayesian ERGM (Caimo & Friel 2011)
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Caimo, Pallotti & Lomi 2017 BERGM results
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Comparing results with Caimo, Pallotti & Lomi 2017 (1)

I Both find a limited number of hospitals receive a large
number of transfers, but diffuse activity of sending patients.

I Both find tendency for interhospital transfer to be in closed
structures of collaborating hospitals:

“This tendency towards network closure is consistent
with the idea that patient transfer relations require a
considerable level of trust and social control between
partner hospitals.”

(Caimo, Pallotti & Lomi, 2017)

I Both also find overall reciprocity of transfers between
hospitals.
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Comparing results with Caimo, Pallotti & Lomi 2017 (2)
I Geographical: Both show that transfers are less likely as

distance increases.
I Hospital attributes:

I Both show positive sender and receiver effects for hospital size
(num. discharges [when geography included] or num. beds).

I Both show regional homophily effects: within HRR, state,
division; or within LHU (of course this is also related to
geographic distance).

I We did not have data on organization form, occupancy rate,
case mix, average length of stay, or clinical specialties to
compare.

I However an interesting difference is that Caimo et al. find no
significant effect of organization form, and we use only the
binary “teaching hospital”, we actually find heterophily on this
attribute: teaching hospitals, while generally more likely to be
receivers and less likely to be senders, are also less likely to
send patients to each other (although this is only significant in
models 1 and 2).
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Comparing results with Caimo, Pallotti & Lomi 2017 (3)

I The Bayesian approached used in Caimo et al. allows some
more sophisticated analyses than we can do with a
non-Bayesian approach, such as incorporating prior
information and the greater flexibility and intuitiveness of the
posterior distribution, as well as allowing analysis of the
posterior correlation matrix.

I It is however, still very computationally expensive: we would
not have been able to analyze the 3308 node network with
this approach (Caimo et al. use a 110 node network).
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