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Introduction

I One measure of the “success” of a patent is the number of
citations it receives from other patents.

I These are known as “forward citations”, and is just the
in-degree in the citation network.

I Innovation involves the combination of knowledge in different
ways.

I But not all possible combinations of knowledge are equally
likely to succeed. So what factors contribute to success?

I We will use the ideas of categorical contrast and niche width
(Hannan et al., 2007; Kovács and Hannan, 2010, 2015), as
well as a new measure of technology class boundary crossing,
to try to answer this question.

I We will use both negative binomial regression and ERGM, as
appropriate, to test hypotheses.
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Contrast (Kovács and Hannan, 2010)

I The contrast of a category captures the idea of sharpness or
fuzziness of category boundaries:
I A category has high contrast (sharp boundaries) if it is seldom

assigned low or moderate levels of category membership.
I A category has lower contrast (fuzzier boundaries) as partial

membership is more common.

I A technology class that is seldom assigned together with other
classes to a patent has high contrast.

I A technology class that is frequently assigned together with
other classes to a patent has low contrast.

I Contrast is defined as the average grade-of-membership
(GoM) in a category, for those with nonzero GoM.
I When the category membership is binary (as in patent

technology classes), then for each patent GoM is just 0 if the
patent does not have that class, and 1/Kp when it does, where
Kp is the number of categories assigned to patent p.
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Niche width (Hannan et al., 2007; Kovács and Hannan,
2010)

I Niche width captures the idea of breadth:
I A patent with high niche width spans many categories

(technology classes); it is generalist.
I A patent with a single technology class has a niche width of 0;

it is specialized.

I The niche width of a patent is the Simpson diversity index of
the GoM vector.

I Equivalently, 1− H where H is the Herfindahl concentration
index.

I For binary memberships as used here, niche width is just
1− 1/Kp.
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Assigned technology classes or cited technology classes?

I Patents are assigned technology classes by the patent office.

I In our data, multiple classes can be assigned.
I So GoM can be defined in two ways:

I By the set of technology classes assigned to a patent.
I By the set of technology classes assigned to the patents cited

by a patent.

I The latter is claimed to better capture the combination of
knowledge by a patent (Gruber et al., 2013; Ferguson and
Carnabuci, 2017).

I We will use both.

I When niche width is defined by classes of cited patents, it is
the same as the “originality” of Trajtenberg et al. (1997); Hall
et al. (2001).
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Class crossing ratio I

I Niche width is a monotonic function of the number of
technology classes, so it captures just breadth and not
diversity as such.

I We define the class crossing ratio to capture a particular idea
of diversity or “boundary crossing”:
I Consider each citation as an arc between each of the classes in

the citing patent to each of the classes in the cited patents.
I The class crossing ratio is the ratio of the number of these

virtual arcs which join different classes, to the total number of
virtual arcs.

I So class crossing ratio is high when a patent cites patents that
have different technology classes than those it is assigned
itself.
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Class crossing ratio II

I This is conceptually different from the typicality measure of
Ferguson and Carnabuci (2017) which measures similarity
among sets of technology classes assigned to the cited patents
only, with a Jaccard index.

I It is also different from Jaccard similarity between classes of
citing patent and union of classes of cited patents.
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Class crossing ratio illustration 1
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Class crossing ratio illustration 2
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J(X ,Y ∪ Z ) = 2/4 = 0.5
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Hypotheses I

H0 Success (citations received) increases with breadth.
I This is measured by niche width.
I “... the positive association between recombinant breadth and

citation impact is one of the most frequently replicated
findings in innovation research...” (Ferguson and Carnabuci,
2017, p. 134).

H1 Success (citations received) increases with diversity.
I Compare with Uzzi et al. (2013), the highest-impact science

has atypical combinations grounded in conventional
combinations; and

I Ferguson and Carnabuci (2017), patents with “more typical”
combinations receiver fewer citations.

I Instead we measure technology class diversity or “boundary
crossing” here with class crossing ratio.

H2 Success increases with maximum contrast of technology
classes.
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Hypotheses II

I Higher contrast categories are easier to interpret; lower
contrast can lead to confusion about categories (Hannan et al.,
2007; Kovács and Hannan, 2010, 2015).

H3 But spanning high contrast categories makes success
less likely.
I Membership in more than one high-contrast category can also

lead to confusion (Kovács and Hannan, 2010, 2015).
I This can be tested by a negative effect for secondary contrast,

that is, the second-largest contrast (Kovács and Hannan,
2015).

H4 Patents with high maximum contrast are unlikely to cite
other patents with high maximum contrast.
I A patent with a very sharply defined category (rarely combined

with other categories) is more likely to cite patents with less
sharply defined categories, combining knowledge from
categories that are more often combined.
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Hypotheses III

H5 (Geographical knowledge spillover): citations are more
likely to be geographically localized.
I Jaffe et al. (1993); Thompson and Fox-Kean (2005);

Henderson et al. (2005); Stivala et al. (2019a).
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Data source

I The patent data is from the Information Retrieval Facility
https://www.ir-facility.org/

I We used the MAREC (Matrixware Research Collection), of
over 19 million patents from 1976 – 2008.
https://www.ir-facility.org/prototypes/marec

I Specifically we used patents (applications and granted) from
the European Patent Office (EPO).

I We extracted bibliographic data for 1 933 231 unique patents
from the full text XML data.

I From this a 1 933 231 node citation network is built.

I 149 instances of self-loops are removed.

I Including nodes for patents cited from patents in that data
(but for which we have no data other than a unique
identifier), a 4 903 886 node citation network is built.

I But this larger network has no attribute data for 61% of the
nodes.
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Patent technology classifications

I The International Patent Classification (IPC) scheme is
hierarchical.

I The highest level is Section (of which there are 8).

I There are then 120 classes and 600 subclasses.

I E.g. Section H is “Electricity” and class H01 is “basic electric
elements”.

I We will use Section and Class levels.

I Note that the EPO (unlike the USPTO data e.g. from NBER)
allows multiple sections and classes to be assigned to a patent.

I Also the EPO assigns classes based on the entire application,
not just the “claims” so is determined objectively by the
examiner (Gruber et al., 2013).
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Summary statistics of the patent data

Statistic N Mean St. Dev. Min Max

Forward citations 1933231 0.573 1.448 0 76
App. Year [base 1978] 1933231 18.442 7.297 0 30
Niche width 1928684 0.236 0.282 0.000 0.929
Max. contrast 1928684 0.659 0.064 0.305 0.812
Secondary contrast 817292 0.586 0.071 0.305 0.766
Contrast share 1928684 0.779 0.265 0.087 1.000
Contrast variance 817292 0.006 0.006 0.000 0.086
Num. classes 1933231 1.595 0.841 1 14
Num. subclasses 1933231 1.934 1.190 1 20
Backward citations (subgraph) 1933231 0.573 1.029 0 117
Cited max. contrast 650656 0.666 0.060 0.383 0.812
Cited secondary contrast 374032 0.599 0.070 0.305 0.766
Cited contrast variance 452945 0.004 0.005 0.000 0.086
Cited contrast share 650656 0.680 0.289 0.080 1.000
Class crossing ratio 650511 0.414 0.311 0.000 1.000
Cited niche width 650866 0.325 0.293 0.000 0.923
Num. sections 1933231 1.370 0.579 1 7
Backward citations (all) 1933231 3.251 2.911 1 142

There are 8 technology sections (highest level IPC classification), and at the next level, 123 technology classes. A
patent can be assigned multiple classes and multiple sections.
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Summary statistics of IPC sections

IPC Section Description N

A Human necessities 405804
B Performing operations; transporting 497492
C Chemistry; metallurgy 464874
D Textiles; paper 54695
E Fixed constructions 78438
F Mechanical engineering; lighting; heating ... 227017
G Physics 477022
H Electricity 438685
Y General ... 0

Note that a patent need not be assigned to only a single section; the sections are not mutually exclusive.
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Summary statistics of the patent citation network

Description N Components Giant Mean Density
component degree

EPO (full) 4903886 746741 3789545 2.30 0.0000002
EPO (subgraph) 1933231 1119794 673306 1.15 0.0000003

Description Reciprocity Clustering Assortativity
coefficient coefficient

EPO (full) 0.0005 0.03125 0.08300
EPO (subgraph) 0.0025 0.07862 0.13231

The “full” network is the network containing not only patents in the data set, but also nodes representing patents
outside the data set, but which are cited by a patent in the data set. The “subgraph” network is the network
induced by only those nodes in the data set itself.
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Distribution of contrast values of technology classes
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The highest value of contrast (0.812) is for A43 (footwear), and
the lowest value (0.250) is for C99 (chemistry; metallurgy). 18 / 35

Distribution of maximum contrast value of patents
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Distribution of class crossing ratio of patents

Class crossing ratio
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The class crossing ratio of a patent is the number of backward citations that represent a direct citation from a class
assigned to the patent, to a different class in the cited patent, divided by the total number of possible class
citations (to both the same or different classes).
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Distribution of technology class Jaccard similarity

Jaccard similarity between technology classses and directly cited technology classes
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Distribution of the Jaccard similarity between the sets of technology classes assigned to a patent, and the union of
the sets of technology classes assigned to the backward citations (directly cited patents) of the patent.
N = 650511, median = 0.667, mean = 0.674, sd = 0.307.
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Negative binomial models, citations as response variable I

Model 1 Model 2 Model 3
App. Year [base 1978] −0.12 (0.00)∗∗∗ −0.12 (0.00)∗∗∗ −0.12 (0.00)∗∗∗

Section A −0.24 (0.01)∗∗∗ −0.31 (0.01)∗∗∗ −0.31 (0.01)∗∗∗

Section B 0.04 (0.00)∗∗∗ −0.05 (0.01)∗∗∗ −0.04 (0.01)∗∗∗

Section C 0.25 (0.00)∗∗∗ 0.15 (0.01)∗∗∗ 0.14 (0.01)∗∗∗

Section D 0.07 (0.01)∗∗∗ −0.00 (0.01) −0.01 (0.01)
Section E −0.39 (0.01)∗∗∗ −0.46 (0.01)∗∗∗ −0.45 (0.01)∗∗∗

Section F −0.07 (0.01)∗∗∗ −0.15 (0.01)∗∗∗ −0.14 (0.01)∗∗∗

Section G 0.19 (0.00)∗∗∗ 0.11 (0.01)∗∗∗ 0.10 (0.01)∗∗∗

Section H 0.17 (0.01)∗∗∗ 0.09 (0.01)∗∗∗ 0.09 (0.01)∗∗∗

Pub. Language German −0.29 (0.00)∗∗∗ −0.29 (0.00)∗∗∗ −0.31 (0.00)∗∗∗

Pub. Language French −0.31 (0.01)∗∗∗ −0.31 (0.01)∗∗∗ −0.32 (0.01)∗∗∗

Backward citations (all) 0.17 (0.00)∗∗∗ 0.17 (0.00)∗∗∗ 0.17 (0.00)∗∗∗

Max. contrast −2.36 (0.44)∗∗∗ −2.70 (0.44)∗∗∗ −2.68 (0.44)∗∗∗

Max. contrast2 3.45 (0.34)∗∗∗ 3.65 (0.34)∗∗∗ 3.61 (0.35)∗∗∗

Niche width 0.22 (0.01)∗∗∗ 0.23 (0.01)∗∗∗

Appplicant Switzerland −0.05 (0.02)∗∗

Inventor Switzerland −0.07 (0.03)∗∗

Appplicant Switzerland×Inventor Switzerland 0.27 (0.03)∗∗∗

Cited max. contrast

Cited max. contrast2

Cited niche width
AIC 3331171.47 3330604.41 3248519.42
BIC 3331371.01 3330816.43 3248768.46
Log Likelihood −1665569.73 −1665285.20 −1624239.71
Deviance 1181391.34 1181445.64 1157693.65
Num. obs. 1927639 1927639 1889616
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Negative binomial models, citations as response variable II

Model 4 Model 5 Model 6
App. Year [base 1978] −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗

Section A −0.14 (0.01)∗∗∗ −0.14 (0.01)∗∗∗ −0.14 (0.01)∗∗∗

Section B −0.00 (0.01) −0.01 (0.01) −0.00 (0.01)
Section C 0.11 (0.01)∗∗∗ 0.10 (0.01)∗∗∗ 0.10 (0.01)∗∗∗

Section D 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Section E −0.35 (0.01)∗∗∗ −0.35 (0.01)∗∗∗ −0.35 (0.01)∗∗∗

Section F −0.04 (0.01)∗∗∗ −0.05 (0.01)∗∗∗ −0.04 (0.01)∗∗∗

Section G 0.06 (0.01)∗∗∗ 0.06 (0.01)∗∗∗ 0.05 (0.01)∗∗∗

Section H −0.03 (0.01)∗∗∗ −0.03 (0.01)∗∗∗ −0.03 (0.01)∗∗∗

Pub. Language German −0.34 (0.01)∗∗∗ −0.34 (0.01)∗∗∗ −0.36 (0.01)∗∗∗

Pub. Language French −0.34 (0.01)∗∗∗ −0.34 (0.01)∗∗∗ −0.34 (0.01)∗∗∗

Backward citations (all) 0.04 (0.00)∗∗∗ 0.04 (0.00)∗∗∗ 0.04 (0.00)∗∗∗

Max. contrast −2.48 (0.72)∗∗∗ −2.63 (0.71)∗∗∗ −2.63 (0.72)∗∗∗

Max. contrast2 2.88 (0.57)∗∗∗ 3.21 (0.57)∗∗∗ 3.19 (0.58)∗∗∗

Niche width 0.23 (0.01)∗∗∗ 0.18 (0.01)∗∗∗ 0.18 (0.01)∗∗∗

Appplicant Switzerland −0.07 (0.02)∗∗

Inventor Switzerland −0.05 (0.03)
Appplicant Switzerland×Inventor Switzerland 0.23 (0.04)∗∗∗

Cited max. contrast 0.01 (0.75) −0.02 (0.75) 0.01 (0.76)

Cited max. contrast2 0.78 (0.59) 0.55 (0.59) 0.53 (0.60)
Cited niche width 0.11 (0.01)∗∗∗ 0.11 (0.01)∗∗∗

AIC 1615185.10 1615025.57 1579868.81
BIC 1615401.42 1615253.28 1580130.28
Log Likelihood −807573.55 −807492.79 −789911.40
Deviance 548718.44 548738.71 538346.76
Num. obs. 650434 650434 639387
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Negative binomial models with secondary contrast I
Model 1 Model 2 Model 3

App. Year [base 1978] −0.10 (0.00)∗∗∗ −0.10 (0.00)∗∗∗ −0.10 (0.00)∗∗∗

Section A −0.19 (0.01)∗∗∗ −0.21 (0.01)∗∗∗ −0.21 (0.01)∗∗∗

Section B 0.02 (0.01)∗∗ −0.00 (0.01) −0.00 (0.01)
Section C 0.11 (0.01)∗∗∗ 0.07 (0.01)∗∗∗ 0.07 (0.01)∗∗∗

Section D 0.07 (0.02)∗∗∗ 0.04 (0.02)∗ 0.04 (0.02)∗

Section E −0.33 (0.02)∗∗∗ −0.34 (0.02)∗∗∗ −0.34 (0.02)∗∗∗

Section F 0.03 (0.01)∗∗ 0.01 (0.01) 0.01 (0.01)
Section G 0.08 (0.01)∗∗∗ 0.06 (0.01)∗∗∗ 0.05 (0.01)∗∗∗

Section H −0.02 (0.01) −0.04 (0.01)∗∗∗ −0.04 (0.01)∗∗∗

Pub. Language German −0.27 (0.01)∗∗∗ −0.27 (0.01)∗∗∗ −0.29 (0.01)∗∗∗

Pub. Language French −0.26 (0.01)∗∗∗ −0.26 (0.01)∗∗∗ −0.27 (0.01)∗∗∗

Backward citations (subgraph) 0.16 (0.00)∗∗∗ 0.16 (0.00)∗∗∗ 0.16 (0.00)∗∗∗

Max. contrast −1.00 (0.97) −1.43 (0.98) −1.67 (0.99)

Max. contrast2 2.39 (0.76)∗∗ 2.73 (0.76)∗∗∗ 2.90 (0.77)∗∗∗

Class crossing ratio 3.01 (0.25)∗∗∗ 2.39 (0.26)∗∗∗ 2.41 (0.27)∗∗∗

Class crossing ratio2 −2.34 (0.19)∗∗∗ −2.00 (0.19)∗∗∗ −2.01 (0.19)∗∗∗

Secondary contrast −5.73 (0.77)∗∗∗ −6.03 (0.77)∗∗∗ −5.77 (0.78)∗∗∗

Secondary contrast2 5.14 (0.67)∗∗∗ 5.25 (0.67)∗∗∗ 5.03 (0.68)∗∗∗

Niche width 0.49 (0.05)∗∗∗ 0.50 (0.05)∗∗∗

Appplicant Switzerland −0.04 (0.03)
Inventor Switzerland −0.08 (0.05)
Appplicant Switzerland×Inventor Switzerland 0.23 (0.06)∗∗∗

Cited max. contrast

Cited max. contrast2

Cited secondary contrast

Cited secondary contrast2

Cited niche width
AIC 761913.27 761804.30 745025.12
BIC 762124.45 762026.05 745278.11
Log Likelihood −380936.63 −380881.15 −372488.56
Deviance 251830.34 251837.63 247074.61
Num. obs. 284767 284767 279728
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Negative binomial models with secondary contrast II
Model 4 Model 5 Model 6

App. Year [base 1978] −0.10 (0.00)∗∗∗ −0.10 (0.00)∗∗∗ −0.10 (0.00)∗∗∗

Section A −0.21 (0.01)∗∗∗ −0.21 (0.01)∗∗∗ −0.21 (0.01)∗∗∗

Section B 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)
Section C 0.07 (0.01)∗∗∗ 0.07 (0.01)∗∗∗ 0.06 (0.01)∗∗∗

Section D 0.02 (0.02) 0.02 (0.02) 0.02 (0.02)
Section E −0.34 (0.02)∗∗∗ −0.35 (0.02)∗∗∗ −0.35 (0.02)∗∗∗

Section F 0.02 (0.01) 0.02 (0.01) 0.03 (0.01)∗

Section G 0.06 (0.01)∗∗∗ 0.06 (0.01)∗∗∗ 0.06 (0.01)∗∗∗

Section H −0.05 (0.01)∗∗∗ −0.05 (0.01)∗∗∗ −0.05 (0.01)∗∗∗

Pub. Language German −0.26 (0.01)∗∗∗ −0.26 (0.01)∗∗∗ −0.28 (0.01)∗∗∗

Pub. Language French −0.26 (0.02)∗∗∗ −0.26 (0.02)∗∗∗ −0.26 (0.02)∗∗∗

Backward citations (subgraph) 0.14 (0.00)∗∗∗ 0.14 (0.00)∗∗∗ 0.14 (0.00)∗∗∗

Max. contrast −0.45 (1.42) −0.22 (1.43) −0.54 (1.45)

Max. contrast2 1.61 (1.12) 1.49 (1.13) 1.75 (1.14)
Class crossing ratio 1.76 (0.32)∗∗∗ 1.36 (0.32)∗∗∗ 1.35 (0.33)∗∗∗

Class crossing ratio2 −1.66 (0.23)∗∗∗ −1.46 (0.24)∗∗∗ −1.46 (0.24)∗∗∗

Secondary contrast −4.76 (0.95)∗∗∗ −4.99 (0.95)∗∗∗ −4.85 (0.96)∗∗∗

Secondary contrast2 4.13 (0.83)∗∗∗ 4.46 (0.83)∗∗∗ 4.35 (0.84)∗∗∗

Niche width 0.64 (0.06)∗∗∗ 0.62 (0.06)∗∗∗ 0.63 (0.06)∗∗∗

Appplicant Switzerland −0.04 (0.04)
Inventor Switzerland −0.07 (0.06)
Appplicant Switzerland×Inventor Switzerland 0.25 (0.07)∗∗∗

Cited max. contrast −3.32 (1.54)∗ −3.63 (1.55)∗ −3.44 (1.57)∗

Cited max. contrast2 3.09 (1.20)∗ 3.29 (1.21)∗∗ 3.13 (1.23)∗

Cited secondary contrast −1.47 (1.07) −1.52 (1.07) −1.76 (1.08)

Cited secondary contrast2 1.31 (0.92) 1.15 (0.92) 1.35 (0.93)
Cited niche width 0.31 (0.05)∗∗∗ 0.31 (0.05)∗∗∗

AIC 597762.41 597712.34 584577.96
BIC 598019.71 597979.92 584875.90
Log Likelihood −298856.21 −298830.17 −292259.98
Deviance 195603.94 195596.40 191914.04
Num. obs. 217890 217890 214014 25 / 35

Negative binomial models with secondary contrast III
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ERGM conditional estimation, 4 903 886 node network I

Effect Model 1 Model 2 Model 3
Arc −12.831

(−13.152,−12.509)
−13.367

(−13.656,−13.079)
−13.188

(−13.501,−12.876)

Isolates 3.236
(2.888,3.583)

3.292
(3.069,3.514)

3.144
(2.927,3.362)

Sink 0.936
(0.771,1.100)

0.764
(0.584,0.944)

0.604
(0.437,0.771)

Source −0.471
(−0.553,−0.389)

−0.424
(−0.448,−0.401)

−0.417
(−0.460,−0.373)

Popularity spread (AinS) 1.135
(1.016,1.254)

1.021
(0.985,1.056)

1.054
(0.954,1.154)

Activity spread (AoutS) −0.129
(−0.163,−0.095)

0.119
(0.080,0.158)

0.260
(0.211,0.309)

Two-path (A2P-T) 0.018
(0.009,0.028)

0.024
(0.014,0.034)

0.032
(0.023,0.042)

Shared popularity (A2P-D) 0.029
(0.018,0.040)

0.027
(0.018,0.037)

0.027
(0.017,0.037)

Shared activity (A2P-U) 0.048
(0.032,0.064)

0.035
(0.031,0.040)

0.025
(0.019,0.032)

Sender App. Year [base 1978] 0.473
(0.458,0.488)

0.450
(0.430,0.470)

0.474
(0.454,0.493)

Receiver App. Year [base 1978] −0.532
(−0.551,−0.513)

−0.500
(−0.524,−0.476)

−0.512
(−0.536,−0.487)

DiffSign App. Year 1.910
(1.713,2.107)

2.132
(2.015,2.249)

2.118
(2.007,2.230)

AbsDiff App. Year −0.673
(−0.704,−0.642)

−0.614
(−0.644,−0.584)

−0.625
(−0.657,−0.593)

Jaccard similarity Applicant countries 0.825
(0.652,0.998)

0.783
(0.605,0.960)

0.760
(0.588,0.932)

Jaccard similarity Inventor countries 0.552
(0.388,0.717)

0.495
(0.365,0.626)

0.474
(0.315,0.632)

Jaccard similarity Sections 4.061
(3.696,4.426)

1.449
(1.337,1.561)

1.337
(1.179,1.496)

Matching Pub. Language 0.216
(0.124,0.309)

0.174
(0.099,0.249)

0.103
(0.039,0.166)
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ERGM conditional estimation, 4 903 886 node network II

Sender Max. contrast −2.874
(−3.169,−2.580)

−3.649
(−3.944,−3.355)

−6.471
(−6.734,−6.208)

Sender Max. contrast2 −0.036
(−0.320,0.247)

0.376
(0.184,0.568)

2.499
(2.355,2.644)

Receiver Max. contrast −7.182
(−7.636,−6.728)

−6.953
(−7.230,−6.676)

−9.947
(−10.309,−9.586)

Receiver Max. contrast2 5.552
(5.098,6.005)

4.538
(4.287,4.789)

6.379
(6.036,6.722)

Jaccard similarity Classes — 5.215
(4.919,5.510)

6.466
(6.141,6.791)

DiffSign Max. contrast 0.005
(−0.007,0.017)

— —

AbsDiff Max. contrast −17.307
(−18.407,−16.207)

— —

Sender Niche width — — 1.780
(1.724,1.836)

Receiver Niche width — — 2.181
(1.937,2.425)

Sender Secondary contrast — — —

Sender Secondary contrast2 — — —
Receiver Secondary contrast — — —

Receiver Secondary contrast2 — — —
Converged runs 20 20 20
Total runs 20 20 20
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ERGM conditional estimation, 4 903 886 node network III

Effect Model 4
Arc −12.952

(−13.332,−12.573)

Isolates 3.164
(2.928,3.401)

Sink 0.648
(0.460,0.835)

Source −0.425
(−0.500,−0.350)

Popularity spread (AinS) 1.061
(0.975,1.148)

Activity spread (AoutS) 0.207
(0.158,0.255)

Two-path (A2P-T) 0.030
(0.018,0.041)

Shared popularity (A2P-D) 0.028
(0.016,0.039)

Shared activity (A2P-U) 0.027
(0.017,0.037)

Sender App. Year [base 1978] 0.468
(0.446,0.490)

Receiver App. Year [base 1978] −0.507
(−0.535,−0.479)

DiffSign App. Year 2.107
(1.959,2.255)

AbsDiff App. Year −0.623
(−0.658,−0.589)

Jaccard similarity Applicant countries 0.739
(0.562,0.916)

Jaccard similarity Inventor countries 0.471
(0.326,0.617)

Jaccard similarity Sections 1.317
(1.149,1.485)

Matching Pub. Language 0.111
(0.025,0.197)
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ERGM conditional estimation, 4 903 886 node network IV

Sender Max. contrast −5.497
(−5.831,−5.162)

Sender Max. contrast2 0.772
(0.586,0.958)

Receiver Max. contrast −8.115
(−8.459,−7.771)

Receiver Max. contrast2 3.496
(3.224,3.769)

Jaccard similarity Classes 6.570
(6.219,6.921)

DiffSign Max. contrast —
AbsDiff Max. contrast —
Sender Niche width 1.614

(1.374,1.854)

Receiver Niche width 2.071
(1.823,2.320)

Sender Secondary contrast −3.218
(−3.444,−2.991)

Sender Secondary contrast2 5.695
(5.395,5.994)

Receiver Secondary contrast −3.834
(−4.106,−3.563)

Receiver Secondary contrast2 6.676
(6.131,7.221)

Converged runs 20
Total runs 20
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Results for hypotheses I

H0 Success (citations received) increases with breadth.
I Confirmed by significant positive niche width estimate in

negative binomial models.
I Note also significant positive backward citation effect in

negative binomial models: another (cruder) measure of
breadth, the number of citations a patent makes.

I Also confirmed in ERGM by significant positive receiver effect
for niche width.

H1 Success (citations received) increases with diversity.
I We included a quadratic term for for diversity, as was done for

max. contrast (following Kovács and Hannan (2010) who find
a quadratic relationship for max. contrast).

I Partly confirmed: there is a quadratic relationship between
class crossing ratio and success, with success increasing with
class crossing ratio up to a point, after which it negatively
affects success.
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Results for hypotheses II
H2 Success increases with maximum contrast of technology

classes.
I Partly confirmed: there is a quadratic relationship between

success and max. contrast, with success decreasing with
maximum contrast up to a point, but increasing thereafter.

I This applies for both maximum contrast of a patent’s classes,
and of maximum contrast of its cited patents’ classes.

I The ERGM models also show a similar pattern with the
Receiver effect on max. contrast.

H3 But spanning high contrast categories makes success
less likely.
I Partly confirmed: there is a quadratic relationship between

success and secondary contrast, with success decreasing with
secondary contrast only up to a point, after which it increases.

I There is a similar pattern in the ERGM for the Receiver effect
for secondary contrast.

H4 Patents with high maximum contrast are unlikely to cite
other patents with high maximum contrast.
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Results for hypotheses III
I Contradicted: In the ERGM model the effect for heterophily

(AbsDiff) on max. contrast is negative and significant.
I DiffSign is not significant.
I It seems that, contrary to H4, there is significant homophily on

max. contrast.
I Is this a poor test of H4, as it is confounded by patents citing

patents with the same technology class?
I Positive significant Jaccard similarity of technology class sets

in all models in which it is included (unsurprising: patents cite
other patents in the same technology classes).

I Note ERGM parameter estimation does not converge well with
both Jaccard similarity of technology classes and the AbsDiff
effect for max. contrast included.

H5 (Geographical knowledge spillover): citations are more
likely to be geographically localized.
I Confirmed: The effect for Jaccard similarity is positive and

significant for both applicant countries and inventor countries
in all ERGM models.
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Unpublished work

I This is unpublished work (as of November 2020).

I Details including methods and references are in the “hidden
bonus slides” after this one.

I I will make these slides available on my website:

I https://sites.google.com/site/alexdstivala/home/

conferences
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CPC technology sections

A Human necessities

B Performing operations; transporting

C Chemistry; metallurgy

D Textiles; paper

E Fixed constructions

F Mechanical engineering; lighting; heating; weapons;
blasting engines or pumps

G Physics

H Electricity

Y General tagging of new technological developments ...

https:

//www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html
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Jaccard similarity

The Jaccard similarity 0 ≤ J(A,B) ≤ 1 between two sets is the
size of their intersection over the size of their union:

J(A,B) =
|A ∩ B|
|A ∪ B|

If |A ∪ B| = 0 i.e. A and B are both empty, then define
J(A,B) = 1.
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Class crossing ratio example

I Assume patent X has classes a,b,c and it cites patent Y with
classes a,c,d and patent Z with class b only

I We consider the total of 3× 3 + 3× 1 = 12 virtual ties (a–a,
a–c, a–d, b–a, b–c, ... , c–b)

I Of these 12 virtual ties 9 are “boundary crossing” (a–c, a–d,
b–a, ..., but not a–a, c–c, b–b, ...)

I So we would give it a boundary crossing score of 9/12 = 0.75

I (In R we can do this using the vector outer product.)

I Note that this is like a kind of generalized E-I index
(Krackhardt and Stern, 1988)

I Although it is in [0, 1] not [−1,+1] — to make it more like
E-I index we would have the numerator as (mismatching -
matching) not just mismatching, applicable to sets of
categories on nodes, rather than just a simple nodal
categorical variable.
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Contrast share
I Contrast share is the ratio of the maximum contrast of

assigned categories to their sum (Kovács and Hannan, 2010).
I In our data, contrast share is highly inversely correlated with

niche width, so we use only niche width.
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Summary statistics of publication languages

Language N

English 1355416
German 435373
French 141397
NA 1045
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Distribution of secondary contrast value of patents

Secondary contrast
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For each patent, the second-largest contrast of the classes it is
assigned. 7 / 27

Distribution of niche width values of patents

Niche width
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Distribution of cited niche width values of patents

Cited niche width

D
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8

The niche width defined over the classes of the directed cited patents of a patent, rather than the classes assigned
to the patent itself.
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Citation network in-degree distribution

1 2 5 10 20 50
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EPO subgraph patent citations

In−degree

C
D

F

Power law  α = 4.565
Log−normal  µ = 0.506  σ = 0.808

The in-degree distribution is consistent with neither a power law (p < 0.05) nor a log-normal distribution
(p < 0.05).
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Citation network out-degree distribution
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EPO subgraph patent citations

Out−degree

C
D
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Power law  α = 5.462
Log−normal  µ = 0.443  σ = 0.569

The out-degree distribution is consistent with neither a power law (p < 0.01) nor a log-normal distribution
(p < 0.001).
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Linear correlation between niche width and class crossing
ratio of patents
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Linear correlation between cited niche width and class
crossing ratio of patents
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Linear correlation between class crossing ratio and Jaccard
similarity between technology classes and union of directly
cited technology classes
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Methods I

I Power law and log-normal distributions were fitted using the
methods of Clauset et al. (2009) implemented in the
poweRlaw package (Gillespie, 2015).

I Negative binomial regression models were estimated using the
MASS (Venables and Ripley, 2002) and formatted with the
texreg (Leifeld, 2013) packages in R (R Core Team, 2016).
Robust standard errors (Hinkley, 1977; MacKinnon and
White, 1985) were estimated with the sandwich (Zeileis, 2004,
2006) and lmtest (Zeileis and Hothorn, 2002) packages in R.
Residual diagnostics from the DHARMa R package (Hartig,
2019).

I ERGM models were estimated with EstimNetDirected
(Byshkin et al., 2018; Borisenko et al., 2020; Stivala et al.,
2019b).

15 / 27

Methods II
I The ERGM DiffSign parameter to control for citation

temporal direction was introduced by Graham et al. (2018);
McLevey et al. (2018) and also used in Stivala et al. (2019a).

I In the full 4.9 million node network, only 1.9 million nodes
represent patents in the data set. The remaining 3 million
nodes (61% of the nodes) represent patents cited by one of
those in the data set, but for which we have no data.

I An ERGM model with NA for all values on those 3 million
nodes does not converge (unlike the 3.7 million node NBER
patent citation network where only 27% of the nodes have no
data in Stivala et al. (2019a)).

I So conditional estimation based on snowball sampling
structure (Pattison et al., 2013; Stivala et al., 2016) was used.
The 1.9 million nodes (39%) with data are treated as wave 0
(seeds) and the remaining 3 million nodes treated as wave 1,
and estimation is conditional on this structure.
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Negative binomial models with class crossing ratio I

Model 1 Model 2 Model 3
App. Year [base 1978] −0.13 (0.00)∗∗∗ −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗

Section A −0.20 (0.01)∗∗∗ −0.06 (0.01)∗∗∗ −0.13 (0.01)∗∗∗

Section B 0.12 (0.00)∗∗∗ 0.11 (0.01)∗∗∗ 0.03 (0.01)∗∗

Section C 0.06 (0.00)∗∗∗ 0.14 (0.01)∗∗∗ 0.04 (0.01)∗∗∗

Section D 0.08 (0.01)∗∗∗ 0.10 (0.01)∗∗∗ 0.02 (0.01)
Section E −0.21 (0.01)∗∗∗ −0.21 (0.01)∗∗∗ −0.28 (0.01)∗∗∗

Section F 0.09 (0.01)∗∗∗ 0.09 (0.01)∗∗∗ 0.00 (0.01)
Section G 0.13 (0.00)∗∗∗ 0.13 (0.01)∗∗∗ 0.05 (0.01)∗∗∗

Section H 0.14 (0.01)∗∗∗ 0.06 (0.01)∗∗∗ −0.02 (0.01)∗

Pub. Language German −0.25 (0.00)∗∗∗ −0.33 (0.01)∗∗∗ −0.33 (0.01)∗∗∗

Pub. Language French −0.27 (0.01)∗∗∗ −0.33 (0.01)∗∗∗ −0.33 (0.01)∗∗∗

Backward citations (subgraph) 0.43 (0.00)∗∗∗ 0.16 (0.00)∗∗∗ 0.17 (0.00)∗∗∗

Max. contrast −1.74 (0.43)∗∗∗ −3.34 (0.56)∗∗∗ −4.04 (0.56)∗∗∗

Max. contrast2 2.67 (0.34)∗∗∗ 4.01 (0.44)∗∗∗ 4.43 (0.44)∗∗∗

Class crossing ratio 0.33 (0.02)∗∗∗ 0.18 (0.03)∗∗∗

Class crossing ratio2 −0.48 (0.03)∗∗∗ −0.42 (0.03)∗∗∗

Niche width 0.30 (0.02)∗∗∗

Cited max. contrast

Cited max. contrast2

Cited niche width
Appplicant Switzerland
Inventor Switzerland
Appplicant Switzerland×Inventor Switzerland
AIC 3318050.97 1610355.84 1609898.86
BIC 3318250.52 1610560.78 1610115.18
Log Likelihood −1659009.49 −805159.92 −804930.43
Deviance 1199294.95 549422.32 549407.66
Num. obs. 1927639 650434 650434

17 / 27



Negative binomial models with class crossing ratio II

Model 4 Model 5 Model 6
App. Year [base 1978] −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗

Section A −0.13 (0.01)∗∗∗ −0.13 (0.01)∗∗∗ −0.13 (0.01)∗∗∗

Section B 0.03 (0.01)∗∗∗ 0.02 (0.01)∗∗ 0.03 (0.01)∗∗∗

Section C 0.04 (0.01)∗∗∗ 0.03 (0.01)∗∗∗ 0.03 (0.01)∗∗

Section D 0.02 (0.01) 0.02 (0.01) 0.01 (0.01)
Section E −0.27 (0.01)∗∗∗ −0.28 (0.01)∗∗∗ −0.28 (0.01)∗∗∗

Section F 0.01 (0.01) 0.00 (0.01) 0.01 (0.01)
Section G 0.05 (0.01)∗∗∗ 0.05 (0.01)∗∗∗ 0.05 (0.01)∗∗∗

Section H −0.02 (0.01)∗ −0.02 (0.01)∗ −0.02 (0.01)∗

Pub. Language German −0.33 (0.01)∗∗∗ −0.33 (0.01)∗∗∗ −0.34 (0.01)∗∗∗

Pub. Language French −0.33 (0.01)∗∗∗ −0.33 (0.01)∗∗∗ −0.33 (0.01)∗∗∗

Backward citations (subgraph) 0.16 (0.00)∗∗∗ 0.16 (0.00)∗∗∗ 0.16 (0.00)∗∗∗

Max. contrast −2.81 (0.73)∗∗∗ −3.18 (0.73)∗∗∗ −3.21 (0.74)∗∗∗

Max. contrast2 3.14 (0.58)∗∗∗ 3.59 (0.59)∗∗∗ 3.60 (0.59)∗∗∗

Class crossing ratio 0.14 (0.03)∗∗∗ −0.11 (0.03)∗∗∗ −0.11 (0.03)∗∗∗

Class crossing ratio2 −0.41 (0.03)∗∗∗ −0.30 (0.03)∗∗∗ −0.30 (0.03)∗∗∗

Niche width 0.34 (0.02)∗∗∗ 0.38 (0.02)∗∗∗ 0.38 (0.02)∗∗∗

Cited max. contrast −0.69 (0.76) −0.98 (0.77) −0.91 (0.78)

Cited max. contrast2 1.01 (0.60) 1.00 (0.61) 0.94 (0.62)
Cited niche width 0.20 (0.01)∗∗∗ 0.20 (0.01)∗∗∗

Appplicant Switzerland −0.06 (0.02)∗∗

Inventor Switzerland −0.04 (0.03)
Appplicant Switzerland×Inventor Switzerland 0.21 (0.04)∗∗∗

AIC 1609786.42 1609545.75 1574445.58
BIC 1610025.52 1609796.23 1574729.79
Log Likelihood −804872.21 −804750.87 −787197.79
Deviance 549418.03 549427.11 539036.16
Num. obs. 650434 650434 639387
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Negative binomial models using cited contrast only I

Model 1 Model 2 Model 3
App. Year [base 1978] −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗

Section A 0.04 (0.01)∗∗∗ −0.01 (0.01) −0.01 (0.01)
Section B 0.15 (0.01)∗∗∗ 0.13 (0.01)∗∗∗ 0.14 (0.01)∗∗∗

Section C 0.07 (0.01)∗∗∗ 0.12 (0.01)∗∗∗ 0.13 (0.01)∗∗∗

Section D 0.10 (0.01)∗∗∗ 0.07 (0.02)∗∗∗ 0.08 (0.02)∗∗∗

Section E −0.04 (0.01)∗∗ −0.14 (0.02)∗∗∗ −0.14 (0.02)∗∗∗

Section F 0.11 (0.01)∗∗∗ 0.13 (0.01)∗∗∗ 0.13 (0.01)∗∗∗

Section G 0.17 (0.01)∗∗∗ 0.17 (0.01)∗∗∗ 0.17 (0.01)∗∗∗

Section H 0.21 (0.01)∗∗∗ 0.14 (0.01)∗∗∗ 0.14 (0.01)∗∗∗

Pub. Language German −0.34 (0.01)∗∗∗ −0.32 (0.01)∗∗∗ −0.32 (0.01)∗∗∗

Pub. Language French −0.33 (0.01)∗∗∗ −0.32 (0.01)∗∗∗ −0.32 (0.01)∗∗∗

Backward citations (subgraph) 0.17 (0.00)∗∗∗ 0.15 (0.00)∗∗∗ 0.15 (0.00)∗∗∗

Class crossing ratio 0.32 (0.02)∗∗∗

Class crossing ratio2 −0.49 (0.03)∗∗∗

Cited max. contrast −1.22 (0.96) −1.05 (0.96)

Cited max. contrast2 1.94 (0.74)∗∗ 1.80 (0.74)∗

Cited secondary contrast −3.88 (0.76)∗∗∗ −3.77 (0.76)∗∗∗

Cited secondary contrast2 3.25 (0.65)∗∗∗ 3.24 (0.65)∗∗∗

Cited niche width −0.12 (0.03)∗∗∗

Appplicant Switzerland
Inventor Switzerland
Appplicant Switzerland×Inventor Switzerland
AIC 1611861.29 964173.87 964153.35
BIC 1612043.45 964368.85 964359.16
Log Likelihood −805914.64 −482068.94 −482057.67
Deviance 549299.64 322525.69 322527.82
Num. obs. 650434 373983 373983
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Negative binomial models using cited contrast only II

Model 4 Model 5
App. Year [base 1978] −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗

Section A −0.01 (0.01) 0.01 (0.01)
Section B 0.14 (0.01)∗∗∗ 0.17 (0.01)∗∗∗

Section C 0.12 (0.01)∗∗∗ 0.14 (0.01)∗∗∗

Section D 0.07 (0.02)∗∗∗ 0.10 (0.02)∗∗∗

Section E −0.14 (0.02)∗∗∗ −0.11 (0.02)∗∗∗

Section F 0.13 (0.01)∗∗∗ 0.16 (0.01)∗∗∗

Section G 0.17 (0.01)∗∗∗ 0.19 (0.01)∗∗∗

Section H 0.14 (0.01)∗∗∗ 0.17 (0.01)∗∗∗

Pub. Language German −0.33 (0.01)∗∗∗ −0.33 (0.01)∗∗∗

Pub. Language French −0.32 (0.01)∗∗∗ −0.32 (0.01)∗∗∗

Backward citations (subgraph) 0.15 (0.00)∗∗∗ 0.15 (0.00)∗∗∗

Class crossing ratio 0.40 (0.11)∗∗∗

Class crossing ratio2 −0.58 (0.09)∗∗∗

Cited max. contrast −0.97 (0.97) −1.01 (0.97)

Cited max. contrast2 1.74 (0.75)∗ 1.73 (0.75)∗

Cited secondary contrast −3.86 (0.77)∗∗∗ −4.03 (0.78)∗∗∗

Cited secondary contrast2 3.30 (0.66)∗∗∗ 3.43 (0.66)∗∗∗

Cited niche width −0.12 (0.03)∗∗∗ 0.10 (0.04)∗∗

Appplicant Switzerland −0.06 (0.03) −0.05 (0.03)
Inventor Switzerland −0.05 (0.04) −0.05 (0.04)
Appplicant Switzerland×Inventor Switzerland 0.23 (0.06)∗∗∗ 0.23 (0.06)∗∗∗

AIC 943423.07 943090.97
BIC 943661.00 943350.52
Log Likelihood −471689.54 −471521.49
Deviance 316546.11 316510.52
Num. obs. 367615 367532
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ERGM results, 1 933 231 node network I

Effect Model 1 Model 2 Model 3
Arc −13.638

(−13.896,−13.380)
−13.932

(−14.224,−13.639)
−13.417

(−13.703,−13.131)

Isolates −0.182
(−0.253,−0.111)

0.046
(−0.009,0.101)

0.087
(0.023,0.151)

Sink −0.763
(−0.848,−0.679)

−0.486
(−0.541,−0.430)

−0.490
(−0.559,−0.421)

Source −0.225
(−0.290,−0.159)

−0.223
(−0.269,−0.176)

−0.222
(−0.285,−0.160)

Popularity spread (AinS) 0.784
(0.697,0.870)

0.757
(0.684,0.831)

0.775
(0.685,0.865)

Activity spread (AoutS) 1.238
(1.096,1.381)

0.841
(0.744,0.937)

0.847
(0.728,0.966)

Two-path (A2P-T) −0.003
(−0.016,0.010)

−0.023
(−0.041,−0.005)

−0.029
(−0.046,−0.012)

Shared popularity (A2P-D) −0.213
(−0.246,−0.180)

−0.119
(−0.146,−0.091)

−0.120
(−0.149,−0.092)

Shared activity (A2P-U) 0.074
(0.055,0.092)

0.062
(0.047,0.078)

0.057
(0.038,0.076)

Sender App. Year [base 1978] 0.454
(0.442,0.465)

0.417
(0.402,0.432)

0.449
(0.431,0.466)

Receiver App. Year [base 1978] −0.523
(−0.540,−0.505)

−0.505
(−0.525,−0.486)

−0.532
(−0.554,−0.509)

DiffSign App. Year 1.872
(1.741,2.003)

2.032
(1.916,2.148)

2.050
(1.937,2.164)

AbsDiff App. Year −0.625
(−0.650,−0.599)

−0.600
(−0.624,−0.576)

−0.629
(−0.659,−0.600)

Jaccard similarity Applicant countries 0.756
(0.582,0.931)

0.808
(0.646,0.970)

0.786
(0.615,0.957)

Jaccard similarity Inventor countries 0.586
(0.432,0.739)

0.573
(0.443,0.702)

0.551
(0.399,0.704)

Jaccard similarity Sections 3.837
(3.518,4.156)

1.501
(1.360,1.643)

1.402
(1.269,1.535)

Matching Pub. Language 0.102
(0.050,0.154)

0.044
(0.004,0.083)

−0.025
(−0.061,0.011)
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ERGM results, 1 933 231 node network II

Sender Max. contrast −1.409
(−1.596,−1.221)

−0.975
(−1.383,−0.567)

−3.547
(−3.849,−3.245)

Sender Max. contrast2 −0.788
(−0.946,−0.630)

−1.375
(−1.762,−0.988)

0.668
(0.490,0.847)

Receiver Max. contrast −6.515
(−6.802,−6.229)

−5.204
(−5.433,−4.975)

−8.099
(−8.373,−7.825)

Receiver Max. contrast2 5.169
(4.917,5.420)

3.303
(3.108,3.497)

5.067
(4.788,5.346)

Jaccard similarity Classes — 4.563
(4.308,4.817)

5.802
(5.523,6.080)

DiffSign Max. contrast 0.008
(−0.001,0.018)

— —

AbsDiff Max. contrast −15.999
(−17.996,−14.002)

— —

Sender Niche width — — 1.487
(1.424,1.551)

Receiver Niche width — — 1.978
(1.798,2.159)

Sender Secondary contrast — — —

Sender Secondary contrast2 — — —
Receiver Secondary contrast — — —

Receiver Secondary contrast2 — — —
Converged runs 20 20 20
Total runs 20 20 20
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ERGM results, 1 933 231 node network III

Effect Model 4
Arc −13.241

(−13.577,−12.906)

Isolates 0.063
(−0.003,0.130)

Sink −0.483
(−0.573,−0.393)

Source −0.252
(−0.324,−0.179)

Popularity spread (AinS) 0.799
(0.710,0.888)

Activity spread (AoutS) 0.834
(0.721,0.947)

Two-path (A2P-T) −0.022
(−0.041,−0.003)

Shared popularity (A2P-D) −0.107
(−0.136,−0.077)

Shared activity (A2P-U) 0.058
(0.038,0.078)

Sender App. Year [base 1978] 0.433
(0.416,0.449)

Receiver App. Year [base 1978] −0.514
(−0.535,−0.492)

DiffSign App. Year 2.046
(1.904,2.189)

AbsDiff App. Year −0.609
(−0.639,−0.579)

Jaccard similarity Applicant countries 0.764
(0.597,0.931)

Jaccard similarity Inventor countries 0.540
(0.382,0.699)

Jaccard similarity Sections 1.392
(1.259,1.525)

Matching Pub. Language −0.016
(−0.051,0.020)
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Sender Max. contrast −2.529
(−2.965,−2.093)

Sender Max. contrast2 −1.325
(−1.736,−0.914)

Receiver Max. contrast −6.258
(−6.603,−5.914)

Receiver Max. contrast2 2.104
(1.910,2.299)

Jaccard similarity Classes 5.907
(5.647,6.167)

DiffSign Max. contrast —
AbsDiff Max. contrast —
Sender Niche width 1.253

(1.108,1.399)

Receiver Niche width 1.726
(1.539,1.914)

Sender Secondary contrast −4.322
(−4.497,−4.147)

Sender Secondary contrast2 7.709
(7.216,8.203)

Receiver Secondary contrast −4.578
(−4.798,−4.359)

Receiver Secondary contrast2 8.102
(7.661,8.544)

Converged runs 20
Total runs 20
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M. T. Hannan, L. Pólos, and G. R. Carroll. Logics of organization theory: Audiences, codes, and ecologies.
Princeton University Press, Princeton, NJ, 2007.

F. Hartig. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models, 2019. URL
https://CRAN.R-project.org/package=DHARMa. R package version 0.2.6.

R. Henderson, A. Jaffe, and M. Trajtenberg. Patent citations and the geography of knowledge spillovers: A
reassessment: Comment. American Economic Review, 95(1):461–464, 2005.

D. V. Hinkley. Jackknifing in unbalanced situations. Technometrics, 19(3):285–292, 1977.

A. B. Jaffe, M. Trajtenberg, and R. Henderson. Geographic localization of knowledge spillovers as evidenced by
patent citations. The Quarterly Journal of Economics, 108(3):577–598, 1993.

25 / 27

http://www.nber.org/papers/w8498
https://CRAN.R-project.org/package=DHARMa


References II
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