# Modeling Large Social Networks via Snowball Samples

Alex Stivala<sup>1</sup> Johan Koskinen<sup>2</sup> Peng Wang<sup>3</sup> Garry Robins<sup>1</sup> David Rolls<sup>1</sup> Alessandro Lomi<sup>4</sup>

<sup>1</sup>The University of Melbourne, Australia
<sup>2</sup>University of Manchester, UK
<sup>3</sup>Swinburne University of Technology, Australia
<sup>4</sup>University of Lugano, Switzerland

#### ICCSS 2015, June 8-11, Helsinki, Finland

### Introduction

- Exponential random graph models (ERGMs) are useful for analyzing social networks.
- But estimating parameters is computationally intensive.
- This restricts the size of the networks that can have an ERGM fitted, to a few thousand nodes at most.
- The Markov chain Monte Carlo (MCMC) methods often used are inherently sequential, limiting the use of high performance parallel computing.
- We will overcome this problem by taking multiple snowball samples, estimating the ERGM parameters for each in parallel, and combining the estimates with meta-analysis.

# Exponential random graph models (ERGMs)

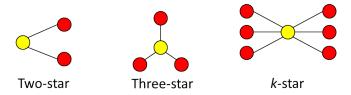
$$\Pr(X = x) = \frac{1}{\kappa} \exp\left(\sum_{A} \theta_{A} z_{A}(x)\right)$$

where

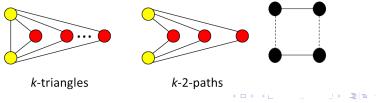
- $X = [X_{ij}]$  is a 0-1 matrix of random tie variables,
- x is a realization of X,
- A is a subgraph configuration,
- $z_A(x)$  is the network statistic for configuration A,
- $\theta_A$  is a model parameter corresponding to configuration A,
- $\kappa$  is a normalizing constant to ensure a proper distribution.

## Model configurations — structural

k-stars: useful for capturing degree distribution



k-triangles (AKT), k-2-paths (A2P): useful for modelling social circuit dependence



## Model configurations — binary actor attributes





Interaction (homophily),  $\rho_B$ 



Actor with attribute

Actor with or without attribute

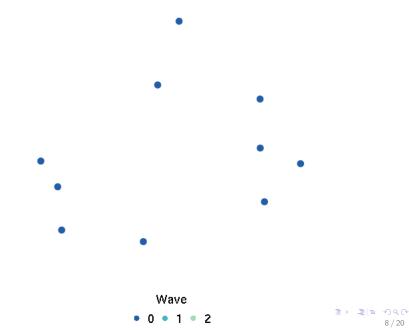
# Scalability

- We can estimate parameters for "small" (up to a few thousand nodes) networks with MCMC methods.
- But the computational intractability means it becomes impractical to estimate larger networks.
- What can we do? One answer is sampling.
- But sampling in networks is not as straightforward as simple random sampling.
- And we can't assume parameter estimates for subnetworks apply to the whole network, as they are specific to N and do not scale linearly.
- One solution is *snowball sampling* with *conditional estimation*.

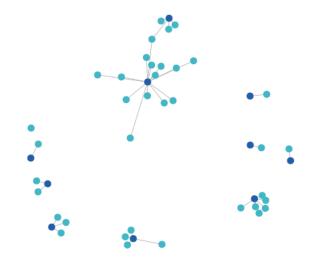
# Snowball sampling

- Start with N<sub>0</sub> seed nodes (wave 0).
- ▶ Follow all their ties to get a further set of nodes (wave 1).
- In general, follow the ties from nodes in wave k − 1 to get the nodes in wave k.
- There is a picture on the next slide...
- ► We can use conditional estimation procedures (Pattison *et al.* 2013) on each snowball sample.

# Snowball sampling example, wave 0



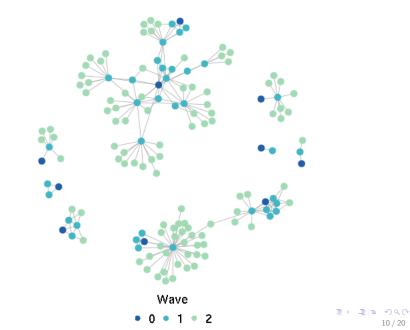
## Snowball sampling example, wave 1



Wave 0 • 1 • 2 ₹

≣।≡ ∽९. 9/20

## Snowball sampling example, wave 2



#### Estimating confidence intervals with bootstrap method

For both the WLS and the median point estimators:

- we use the non-parametric bootstrap adjusted percentile (BCa) method to estimate the confidence interval:
- with R bootstrap replicates of our estimator µ<sup>\*</sup><sub>θ(i)</sub>, i ∈ 1...R, in nondecreasing order, the basic percentile C.I. is (µ<sup>\*</sup><sub>θ((R+1)α)</sub>, µ<sup>\*</sup><sub>θ((R+1)(1-α))</sub>)
- The BCa method (Efron 1987) adjusts for bias and skewness in the bootstrap distribution, using the estimated std. errors s<sub>j</sub>.

#### Simulated networks — methods

By using simulated networks, we can measure errors in the estimation. By simulating networks, each with a single parameter set to zero, we can measure Type I error rates in inference.

| N     | Attr                 | Edge | Alt. <i>k</i> -Star | AKT | A2P  | ρ     | $\rho_B$ |
|-------|----------------------|------|---------------------|-----|------|-------|----------|
| 5000  | None                 | -4.0 | 0.2                 | 1.0 | -0.2 |       |          |
| 5000  | 50/50                | -4.0 | 0.2                 | 1.0 | -0.2 | 0.2   | 0.5      |
| 5000  | $50/50$ $^{\dagger}$ | -4.0 | 0.2                 | 1.0 | -0.2 | -0.25 | 0.5      |
| 10000 | None                 | -4.0 | 0.2                 | 1.0 | -0.2 |       |          |

<sup>†</sup>We refer to this network as "balanced" since homophily and interaction are balanced (there is no "differential homophily" since  $\rho = -2\rho_B$ ).

#### Snowball estimation — methods

We take 100 sample networks for each simulated network and do parallel conditional estimations using 20 parallel processes for each with parameters:

- 2 waves
- 10 seeds
- > 20 seed sets, i.e. snowball samples (so one per parallel process)

Parallel snowball PNet has been implemented using both MPI (for clusters) and OpenMP (for multicore PCs).

The cluster system we used is an SGI Altix XE Cluster, 1088 Intel Nehalem cores (8 per node) 2.66 GHz, CentOS 5, OpenMPI.

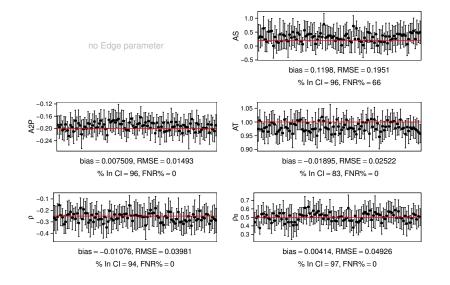
#### Simulated networks — elapsed time

5000 node network, no attributes. 83.5 hours for parameter estimation on full network with PNet.

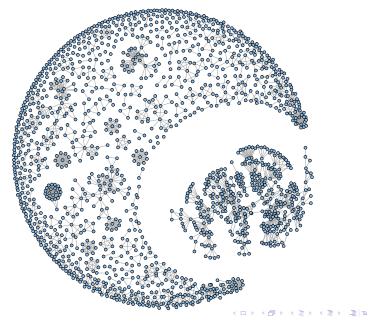
25 20 Frequency 15 9 ß 0 - 문 ( 권 0.10 0.15 0.20 14/20

mean total estimation time = 0.14 hours

#### Results: 5000 node balanced 50/50 network



#### Network science collaboration network N = 1589



16 / 20

## Results for network science collaboration network

| Effect | Estimate | std. errror | convergence statistic |   |
|--------|----------|-------------|-----------------------|---|
| A2P    | -0.0216  | 0.0085      | 0.0493                | * |
| AT     | 3.8091   | 0.0602      | -0.0401               | * |
| Edge   | -7.3165  | 0.1335      | -0.0321               | * |
| AS     | -0.7046  | 0.0635      | -0.0784               | * |
|        |          |             |                       |   |

Standard PNet (full network), 9.5 days.

| - | Effect   | N <sub>s</sub> E | Estimate | C.I.      |           |       |                 |
|---|----------|------------------|----------|-----------|-----------|-------|-----------------|
|   |          |                  |          | lower     | upper     |       |                 |
|   | A2P      | 20               | -0.0451  | -0.1281   | 0.0380    |       |                 |
|   | AT       | 20               | 3.7423   | 3.1692    | 4.3155    | *     |                 |
|   | Edge     | 20               | -7.9978  | -8.7875   | -7.2081   | *     |                 |
|   | AS       | 20               | -0.4655  | -0.6893   | -0.2417   | *     |                 |
|   | Snowball | PNet:            | 2 waves, | 10 seeds, | 20 proces | sors, | 5 hours elapsed |
|   |          |                  |          |           |           |       |                 |

(15 hours total CPU time).

### Results for condmatcollab2005 network, $N\,=\,40\,\,421$

| Effect | Ns | Estimate | C.I.     |         |   |
|--------|----|----------|----------|---------|---|
|        |    |          | lower    | upper   |   |
| A2P    | 63 | -0.0004  | -0.0044  | 0.0037  |   |
| AT     | 63 | 4.3729   | 3.6009   | 5.1448  | * |
| Edge   | 63 | -9.2179  | -10.5882 | -7.8477 | * |
| AS     | 63 | -0.6983  | -1.1029  | -0.2936 | * |

100 snowball samples (100 tasks), 3 seeds, 2 waves. 102 hours.

| Effect | Ns | Estimate | C.I.     |         |   |
|--------|----|----------|----------|---------|---|
|        |    |          | lower    | upper   |   |
| A2P    | 57 | 0.0001   | -0.0045  | 0.0046  |   |
| AT     | 57 | 4.2161   | 3.4736   | 4.9586  | * |
| Edge   | 57 | -8.8726  | -10.2970 | -7.4482 | * |
| AS     | 57 | -0.8375  | -1.2084  | -0.4666 | * |

Results after 7 hours.

# Conclusions and future work

- We have shown how to make inferences from ERGM parameters for large (over 40 000 nodes) networks.
- Previously, this was only possible for a few thousands nodes at most.
- Future (ongoing current) work:
  - Directed networks (the subject of my upcoming talk at INSNA Sunbelt XXXV, June 23–28, Brighton UK).
  - ► Handle networks with hubs ("power law" degree distribution).
  - Bias correction.
  - Bipartite networks.
  - Goodness-of-fit procedure.

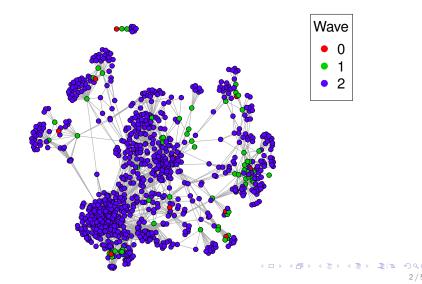
## Acknowledgments

- Co-authors: Peng Wang, Johan Koskinen, Garry Robins, David Rolls, Alessandro Lomi
- Pip Pattison
- University of Melbourne ITS High Performance Computing
- This research was supported by Victorian Life Sciences Computation Initiative (VLSCI) grant numbers VR0261 and VR0297 on its Peak Computing Facility at the University of Melbourne, an initiative of the Victorian Government, Australia.
- And the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575, with Prof. Noshir Contractor and Dr Yun Huang at Northwestern U.

Hidden bonus slides

### Snowball sampling example from Nexus condmatcollab2005

Snowball sample (n = 907) from condensed matter collaborations network N = 40421, 2 waves, 10 seeds.



#### Meta-analysis

Weighted least squares estimator, as used in Snijders and Baerveldt, 2003, *J. Math. Sociol.* 27:123–151:

$$\hat{\mu}_{\theta}^{\text{WLS}} = \frac{\sum_{j} \left( \hat{\theta}_{j} / (\hat{\sigma}_{\theta}^{2} + s_{j}^{2}) \right)}{\sum_{j} \left( 1 / (\hat{\sigma}_{\theta}^{2} + s_{j}^{2}) \right)}$$

where

- ▶  $j \in 1, \ldots, N_s$  are the  $N_s$  snowball samples,
- $\hat{\theta}_j$  is the estimate for sample j,
- ▶  $\hat{\sigma}_{\theta}^2 = 0$  is the estimated between-sample variance, zero by assumption,
- ► *s<sub>j</sub>* is the estimated standard error for sample *j*.

Also, we can use the median as an estimator with few assumptions.

## Simulated networks

| N     | Attributes     | Mean   | Mean   | Mean    | Mean         |
|-------|----------------|--------|--------|---------|--------------|
|       |                | #comp. | degree | density | clust. coef. |
| 5000  | None           | 1.00   | 8.76   | 0.00175 | 0.02451      |
| 5000  | 50/50          | 1.00   | 9.54   | 0.00191 | 0.02661      |
| 5000  | 70/30          | 1.00   | 9.99   | 0.00200 | 0.02762      |
| 5000  | 50/50 balanced | 1.01   | 8.51   | 0.00170 | 0.02428      |
| 10000 | None           | 1.00   | 10.04  | 0.00100 | 0.01553      |

# Type I error rate: 5000 node balanced 50/50 network

| N    | Attributes     | Effect   | Bias    | RMSE   | Type I | Type I error rate (%) |       | Std. dev. | Mean      |
|------|----------------|----------|---------|--------|--------|-----------------------|-------|-----------|-----------|
|      |                |          |         |        | Estim. | 95%                   | C.I.  | estimate  | samples   |
|      |                |          |         |        |        | lower                 | upper |           | converged |
| 5000 | None           | AT       | -0.0087 | 0.0683 | 3      | 1                     | 8     | 0.0681    | 18.94     |
| 5000 | None           | AS       | 0.2483  | 0.4185 | 6      | 3                     | 12    | 0.3386    | 10.16     |
| 5000 | 70/30          | AT       | -0.0027 | 0.0477 | 3      | 1                     | 8     | 0.0479    | 19.96     |
| 5000 | 70/30          | AS       | 0.2394  | 0.2925 | 5      | 2                     | 11    | 0.1689    | 16.08     |
| 5000 | 70/30          | $\rho$   | -0.0419 | 0.0753 | 6      | 3                     | 12    | 0.0629    | 18.17     |
| 5000 | 70/30          | $\rho_B$ | -0.0099 | 0.0646 | 4      | 2                     | 10    | 0.0641    | 18.17     |
| 5000 | 50/50 balanced | AT       | -0.0091 | 0.0706 | 3      | 1                     | 8     | 0.0703    | 19.16     |
| 5000 | 50/50 balanced | AS       | 0.1648  | 0.4174 | 7      | 3                     | 14    | 0.3854    | 10.48     |
| 5000 | 50/50 balanced | $\rho$   | -0.0245 | 0.0500 | 7      | 3                     | 14    | 0.0438    | 16.96     |
| 5000 | 50/50 balanced | $\rho_B$ | -0.0022 | 0.0639 | 2      | 1                     | 7     | 0.0642    | 15.17     |
| 5000 | 50/50          | AT       | -0.0128 | 0.0480 | 0      | 0                     | 4     | 0.0465    | 19.87     |
| 5000 | 50/50          | AS       | 0.2369  | 0.2949 | 5      | 2                     | 11    | 0.1764    | 14.00     |
| 5000 | 50/50          | $\rho$   | -0.0245 | 0.0500 | 6      | 3                     | 12    | 0.0438    | 16.96     |
| 5000 | 50/50          | $\rho_B$ | 0.0103  | 0.0526 | 4      | 2                     | 10    | 0.0519    | 17.25     |