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1 Research Objective

We aim to determine whether general-purpose
graphics programming units (GPGPU s) are
practical as a low-cost technique for accelera-
tion of optimal sequence alignment algorithms
in order for higher precision searches in com-
parable time to fast heuristic methods.

2 Motivation

Searching sequence databases for sequences
similar to a query sequence is an important
and frequently occurring task in bioinformat-
ics. For example, such database searches allow
some deductions about the function of a newly
sequenced protein to be made on the basis of
its sequence similarity to existing well-studied
proteins, even in the absence of a known struc-
ture.

The Smith-Waterman algorithm (Smith and
Waterman, 1981) provides a method to do this
by mathematically optimal local alignment of
the sequences. However, traditionally it has
been too slow for practical large scale use, and
heuristic methods such as BLAST (Altschul
et al., 1990) and FASTA (Pearson and Lipman,
1988) are usually used instead.

The recent emergence of graphics processing
units (GPU s) as relatively low-cost and high-
performance processing parallel processing
units, and, relative to CPUs, their currently
faster rate of improvement in peak process-
ing speed and memory bandwidth (NVIDIA,
2008), has lead to their use for purposes other
than graphics rendering. Programming models
that allow programming of GPUs in a general-
purpose rather than in a graphics-specific man-
ner, such as NVIDIA CUDA (Compute Uni-
fied Device Architecture) (NVIDIA, 2008), are
likely to make it more practical to write code
to make use of the speed and parallelism of
GPUs.

3 Science Background

The Smith-Waterman algorithm uses dynamic
programming to find the optimal local align-
ment of two sequences using a scoring ma-
trix for nucleotides or amino acids and a lin-
ear gap cost, with quadratic time complex-
ity (Smith and Waterman, 1981). The algo-
rithm was enhanced by Gotoh (1982) to al-
low affine gap costs, that is, there is both
a gap opening penalty and a separate gap
extension penalty. The time complexity re-
mains quadratic. References to the “Smith-
Waterman algorithm” are often taken to in-
clude the affine gap penalty, and we do so here.

The “standard” implementation of the
Smith-Waterman algorithm is the SSEARCH

program in the FASTA package (Pearson and
Lipman, 1988).

Sequence alignment algorithms can operate
on arbitrary sequences, and in the context of
bioinformatics we are generally operating on
either DNA or RNA sequences (of nucleotides)
or protein sequences (of amino acids). In this
study we use only protein sequences.

Local sequence alignment can be used for
sequence database search by finding the align-
ment score of a query sequence against each se-
quence in the database; the top-scoring “hits”
are then ranked in order, giving a ranked list
of sequences similar to the query sequence.

Heuristic methods such as FASTA (Pearson
and Lipman, 1988), BLAST (Altschul et al.,
1990) and PSI-BLAST (Altschul et al., 1997)
use a variety of techniques, such as finding
small exact matching seed alignments and ex-
tending them, and only reporting hits above a
threshold, to achieve significant speed improve-
ments over the Smith-Waterman algorithm, at
some cost (at least in theory) to sensitivity. In
addition, these methods, rather than reporting
the raw alignment score, compute an E-value,
giving the number of hits with the same (or
better) similarity score that would be expected
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to occur purely by chance, given the sizes of the
input sequence and the searched database.

Another, more sensitive but slower, method
for searching sequence databases is to use pro-

file Hidden Markov Models (profile HMMs)
(Durbin et al., 1998; Eddy, 1998). This
method uses a statistical model to find se-
quences in the database that are similar to
the sequences in the multiple alignment that
was used to build the profile HMM used as the
query. The HMMER software package1 imple-
ments this technique.

3.1 Accelerating the Smith-

Waterman algorithm

One method for accelerating the Smith-
Waterman algorithm, without using a graph-
ics card or other hardware, is to use single in-
struction multiple data (SIMD) vector instruc-
tions available on some processors. Wozniak
(1997) used the Sun Ultra SPARC Visual In-
struction Set to compute four rows of the dy-
namic programming matrix in parallel, achiev-
ing a better than two-fold speedup. Rognes
and Seeberg (2000) use Intel MMX (multime-
dia extension) and SSE (streaming SIMD ex-
tensions) instructions where the SIMD regis-
ters contain values parallel to the query se-
quence, and a pre-computed “query profile” to
achieve a six-fold speeedup. Farrar (2007) im-
proves upon the Rognes and Seeberg (2000)
method by “striping” the query profile in or-
der to move data dependencies out of the inner
loop, along with some further optimizations,
achieving a further two to eight fold speedup.
The current version of the SSEARCH implemen-
tation of Smith-Waterman in the FASTA pack-
age2 incorporates the Farrar (2007) SSE2 ac-
celeration.

1http://hmmer.janelia.org
2Version 35.4.2, http://faculty.virginia.

edu/wrpearson/fasta/fasta3.tar.gz, downloaded
5/01/09

The Smith-Waterman algorithm can be ac-
celerated by using special purpose hardware or
FPGAs (Oliver et al., 2005), or by taking ad-
vantage of the parallelism provided by com-
modity graphics cards such as those manufac-
tured by NVIDIA. This parallelism can be very
fine-grained; for example the NVIDIA GTX
280 card has 30 multiprocessors, each with
eight Scalar Processor cores, and hundreds of
threads may be concurrently active (NVIDIA,
2008). Importantly, this hardware now sup-
ports double-precision floating point, which
has not previously been the case (NVIDIA,
2008).

One method of taking advantage of the par-
allelism of the GPU is to compute all ele-
ments on the same antidiagonal of the Smith-
Waterman dynamic programming matrix in
parallel, thereby accelerating each single com-
parison of a query to a database sequence. This
method is used by Liu et al. (2007). Another
method is to simply allocate each thread in the
GPU to an alignment of the query sequence to
a single database sequence, thereby computing
many alignment scores simultaneously. This
method is used by Manavski and Valle (2008).
As a consequence of the CUDA programming
model, it is important for efficiency that all
threads in a grid of threads should terminate
as nearly at the same time as possible, and for
this reason the database sequences should be
sorted by length so that adjacent threads op-
erate on database sequences of similar length.
The swcuda implementation of Manavski and
Valle (2008) does this automatically.

According to Wirawan et al. (2008), the
best performing accelerated Smith-Waterman
implementation published to date is their
CBESW program for the Cell Broadband En-
gine in the Sony PlayStation 3.
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3.2 Accelerating profile HMM algo-

rithms

The computationally intensive algorithms in-
volved in database searches using profile
HMMs have also been accelerated using several
different techniques, including the use of SIMD
instructions, multiprocessor systems, FPGAs
and graphics hardware (Walters et al., 2007).
Recently, GPU-HMMER, a CUDA accelera-
tion of HMMER was released,3 as well as an
alpha release of the new HMMER version 3,
which contains heuristics to accelerate HM-
MER (Eddy, 2008) and makes use of the SSE2
instruction set.4

4 Methods

4.1 Software

We assessed software described in any of the
papers previously cited if it was freely available
(at least for academic use) and would run on
our hardware (PC and NVIDIA graphics card).
A list of the software assessed is shown in Ta-
ble 1. For each program, the latest version
currently available was used, and we compiled
the software from source on our system. We
tried both the GNU Compiler Collection (gcc)
version 4.1.2 and the Intel C compiler version
11.0. In most cases there was little or no differ-
ence in speed of the compiled code based on the
compiler used, so the gcc compiled version was
used (on the basis that this compiler is avail-
able to everyone). An exception is HMMER
3.0a1 (Eddy, 2008), where the Intel compiler
produced code that ran approximately twice
as fast, so we used the Intel compiled version.

For CUDA programs, we built with the
NVIDIA CUDA Toolkit and Software Devel-

3http://www.mpihmmer.org
4http://cryptogenomicon.org, January 12th, 2009

opment Kit Version 2.0.

In the case of swsse2, the striped Smith-
Waterman implementation by Farrar (2007),
the code was written for the Windows plat-
form. In order to build it on Linux, we had to
make minor changes (only to the timing code)
and compiled it with gcc with the optimization
-O3 option.

For swcuda, the CUDA implementation of
Smith-Waterman (Manavski and Valle, 2008),
we made a minor change to allow the program
to operate on FASTA files containing lowercase
amino acid codes.

We found that PSI-BLAST crashed and gave
warning messages and bad output as described
by Osowski et al. (2007), and so we applied the
patches5 to to fix these bugs and optimize PSI-
BLAST described therein.

We wrote scripts to implement the evalua-
tions described in Section 4.3 in Python6 us-
ing BioPython7 including the Bio.SCOP inter-
face (Casbon et al., 2006) to read SCOP and
ASTRAL data. We modified the Bio.SCOP
library slightly in order to not remove se-
quences whose identifiers do not start with ’d’,
since the genetic domain sequences consisting
of multiple concatenated chains have identi-
fiers starting with ’g’ in the ASTRAL sequence
database.8 All graphs were created using the
R statistics package.9

4.2 Data sets

For evaluating the accuracy of sequence
database search using structural similarity as
the gold standard, we used the ASTRAL
(Brenner et al., 2000; Chandonia et al., 2004)
compendium and the SCOP database (Murzin

5http://www.it.abo.fi/finhpc/blastpgp/
6http://www.python.org
7http://www.biopython.org
8http://astral.berkeley.edu/scopseq-os-1.73.

html
9http://www.r-project.org
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Program Version Publication GPU Download location
NCBI BLAST 2.2.19 Altschul et al. (1990) N ftp://ftp.ncbi.nih.gov/blast

NCBI PSI-BLAST 2.2.15 Altschul et al. (1997) N ftp://ftp.ncbi.nih.gov/blast

FASTA / SSEARCH 35.4.2 Pearson and Lipman (1988) N http://faculty.virginia.edu/wrpearson

swcuda 1.92 Manavski and Valle (2008) Y http://www.manavski.com

swsse2 Farrar (2007) N http://farrar.michael.googlepages.com

HMMER 2.3.2 Eddy (1998) N http://selab.janelia.org

GPU-HMMER 0.9 Balu et al. (2008) Y http://www.mpihmmer.org

HMMER 3.0a1 Eddy (2008) N http://selab.janelia.org

Table 1: Software assessed. The GPU column indicates whether or not the software makes use
of the GPU.

et al., 1995; Andreeva et al., 2004), version
1.73. We made use of both the full ASTRAL
genetic domain sequence database based on
PDB SEQRES records (92 913 sequences) and
its 40% sequence identity non-redundant sub-
set (9 536 sequences).

For accuracy evaluation, we used two query
sets. The first is a set of 1551 query sequences
generated by by selecting the sequence of one
domain from each superfamily in the SCOP
1.73 that contains at least two domains. This
gives a representative query set, in that each
superfamily is represented by a single query.
The second query set is all-against-all in the
40% sequence identity nonredundant subset,
giving 9 536 queries.

Since ASTRAL contains only sequences that
have a structure from the SCOP database, for
timing experiments where known structures or
classifications are not required for accuracy
evaluation, we used a larger sequence database.
We used UniProtKB/Swiss-Prot (Boeckmann
et al., 2003) release 14.5, consisting of 402 482
sequences. In order to avoid problems with
programs such as swcuda that do not handle
characters other than the standard 20 amino
acids symbols in FASTA files, we replaced
all occurrences of U (selenocysteine) and O
(pyrrolysine) with X (any).

When evaluating the GPU-HMMER
cuda hmmsearch program, we used a copy

of the ASTRAL SCOP sequence database
that was sorted by sequence length with
the hmmsort program included in GPU-
HMMER. This way, adjacent threads operate
on database sequences of similar length, so
that threads in a grid terminate as near
to simultaneously as possible, in order to
minimize thread latency and hence maximize
speedup (Balu et al., 2008).

For timing in the UniProt database, we
also used two query sets. The first is the
set of 11 queries first defined by Altschul
et al. (1997) and subsequently used by oth-
ers including Rognes and Seeberg (2000); Far-
rar (2007); Manavski and Valle (2008). Se-
quence accession P10318 was replaced with
P03989 (1B27 HUMAN) as the latter replaces
the former in UniProtKB/Swiss-Prot release
14.5. The second query set is a set of 10
query sequences less than 360 amino acids in
length, generated so that they are approxi-
mately evenly spaced in length from 10 to 360
amino acids. These are used for testing swcuda

using the GPU only, and no CPU, since it au-
tomatically load balances between GPU(s) and
CPU(s) available to it, and can only use solely
the GPU for queries less than 360 amino acids
long.

In finding models for the query sequences
as described in Section 4.4, we used the Pfam
database (Finn et al., 2008) release 23.0 (July
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2008, 10340 families), in binary format. We
calibrated the database with hmmcalibrate

and indexed it with hmmindex.

4.3 Accuracy evaluation

We evaluate the specificity and sensitivity of
sequence database search methods as a mea-
sure of homology by using membership of two
sequences in the same SCOP family or super-
family as the gold standard for homology. This
method was used by Brenner et al. (1998) and
others subsequently including Rognes (2001)
and Hulsen et al. (2006). Brenner et al. (1998)
and Rognes (2001) used membership of the
same SCOP superfamily as the criterion for
true homology, while Hulsen et al. (2006) uses
SCOP family. We evaluate using both criteria
separately. This allows us to compare differ-
ences in sensitivity to more or less distant ho-
mology between methods, since membership of
the same superfamily as the homology criterion
assesses the ability of a method to detect more
distant homology than using family.

Using this definition of true homology, we
evaluate the accuracy of sequence database
search methods using both ROC50 scores
(Gribskov and Robinson, 1996) and coverage
versus error plots (Brenner et al., 1998).

4.3.1 ROC50 calculation

Receiver Operating Characteristic (ROC )
curves are used to measure the sensitivity and
specificity of a classifier (in this case we are
using sequence comparison methods to clas-
sify the query sequence as to whether or not
it is in the same family or superfamily as a
database sequence). The ROC curve is a plot
of the true positive rate of a classifier against
the false positive rate, as the cutoff score for
the positive classification is varied. The area
under the ROC curve (AUC ) is then a measure
of the performance of the classifier: a “perfect”

classifier has an AUC of 1.0, and a random clas-
sifier has as its ROC curve the line with slope
1.0, which has AUC 0.5. The AUC is equiva-
lent to the Mann-Whitney U statistic (Hanley
and McNeil, 1982).

A shortcoming of the AUC measure is that
the method must generate a score for every se-
quence in the database, which is an extremely
large volume of results, and is not realistic in
the case of sequence database searches, where
typically only the top few hundred “hits” are
used (and where many methods only gener-
ate a few hundred top scores). Gribskov and
Robinson (1996) overcome these problems by
defining ROC50 as the area under the ROC
curve plotted until 50 true negatives are found.
ROC50 or ROCn for other values of n was sub-
sequently also used in several other studies in-
cluding Schäffer et al. (2001); Altschul et al.
(2005); Hulsen et al. (2006). We compute the
ROC50 score by sorting the results by score
and calculating the Mann-Whitney U statistic
(Mann and Whitney, 1947) for the top scores
up to the first 50 false positives, and divid-
ing this value by the product of the number
of false positives (i.e. 50) and the total num-
ber of true positives possible in the data (i.e.
the number of sequences that are in the same
family or superfamily as the query). The av-
erage ROC50 score over all queries then gives
the ROC50 score for the method and data and
query set being assessed.

4.3.2 Coverage versus error calculation

Coverage versus error plots were introduced
by Brenner et al. (1998) as an alternative to
ROC curves for comparing sequence compari-
son methods which have a huge background of
false positives (non-homologs), and were subse-
quently also used by Rognes (2001) and Hulsen
et al. (2006). To generate the plot we use
each sequence in the query set to search the
database, and sort the combined results by
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score. The cutoff score for considering a score
as a hit is then varied from highest to lowest
score (smallest to largest E-value).

Coverage is defined as the number of true
positives divided by the total number of pos-
sible true positives (i.e. the number of se-
quences in the same family or superfamily as
the query). Errors per Query (EPQ) is defined
as the number of false positives divided by the
number of queries. The plot of EPQ against
coverage for each score threshold is the cover-
age versus error graph.

4.4 HMMER

HMMER database searches using hmmsearch

are different from the other programs, in that
the query is a profile HMM rather than a
sequence. For this reason we cannot assess
hmmsearch queries in the same way as the oth-
ers by using membership of the same SCOP
family or superfamily as the gold standard for
homology. We use a less direct approach, using
hmmpfam to find the best profile HMM (model)
for each sequence in the query set. These mod-
els are then used as the hmmsearch query, and
membership of the database sequence in the
same SCOP family or superfamily as the se-
quence that was used as the input to hmmpfam

to generate the query model was used as the
gold standard for homology. Note that not
all sequences find a model, and there may
also be cases where the most significant model
found is not really the best model for the se-
quence. Therefore some caution should be used
in interpreting these results as evaluations of
hmmsearch accuracy, and we assess the differ-
ent versions of hmmsearch only against each
other, not against other methods which were
evaluated in the direct manner.

HMMER version 3 (3.01a) introduced a new
program phmmer which takes a single sequence
as the query, and hence it can be assessed in
the same way as BLAST and the others.

4.5 Hardware

All tests were run on a PC with an Intel Q8200
CPU (4 cores) running at 2.33GHz with 4 GB
memory running CentOS 5.2 Linux in 64-bit
mode. The graphics card used was an NVIDIA
GTX 280 with 1 GB memory.

5 Results

All the sequence search programs were run us-
ing the BLOSUM62 scoring matrix (Henikoff
and Henikoff, 1992) with gap opening penalty
of 11 and gap extension penalty of 1. The
phmmer program in HMMER 3.0a1, which
works differently and uses gap open and extend
probabilities rather than penalties; we used the
defaults (open probability 0.02, extend proba-
bility 0.4). The BLOSUM62 scoring matrix
(the default) was used. The hmmsearch pro-
gram works differently from sequence search
programs, and the concepts of substitution ma-
trices and gap costs are not relevant.

PSI-BLAST was run with a maximum of 5
iterations (with the -j 5 option).

The HMMER 3.0a1 phmmer program with
the --max option to disable heuristic filters
(labelled as phmmer-max in the tables and
graphs) was too slow to complete the all-
against-all queries in practical time, and so is
not included in the results.

5.1 Accuracy

Table 2 and Table 3 show the ROC50 values
for the 1551 query sequences, one for each su-
perfamily in SCOP, evaluated at the family
and superfamily levels, respectively. We con-
sider the methods as divided into four classes,
the profile HMM methods (phmmer, with and
without filter heuristics enabled), the Smith-
Waterman methods (swsse2, swcuda, ssearch),
the heuristic methods (BLAST, FASTA), and
PSI-BLAST. We consider PSI-BLAST in a
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method roc50

ncbi-psiblast 0.896
ssearch 0.893
phmmer-max 0.892
phmmer 0.891
swcuda 0.890
swsse2 0.889
fasta 0.878
ncbi-blast 0.878

Table 2: Average ROC50 values for different
methods for the 1551 queries against the AS-
TRAL SCOP 1.73 all sequences data set, eval-
uated at the family level.

method roc50

ncbi-psiblast 0.793
phmmer 0.790
phmmer-max 0.789
ssearch 0.779
swsse2 0.778
swcuda 0.777
ncbi-blast 0.765
fasta 0.763

Table 3: Average ROC50 values for different
methods for the 1551 queries against the AS-
TRAL SCOP 1.73 all sequences data set, eval-
uated at the superfamily level.

class of its own as it is both a heuristic method,
and an iterative method that builds its own
position-specific scoring model (like HMMER,
but in a more ad hoc manner).

At both the family and superfamily lev-
els, PSI-BLAST performs best on the ROC50

evaluation measure, followed by HMMER,
then the Smith-Waterman methods and fi-
nally the heuristic methods. The exception is
SSEARCH, which is (slightly) better than HM-
MER at the family level, but at the superfam-
ily level we note that the increased sensitivity
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Coverage versus Error for query1551 set in full SCOP

Figure 1: Coverage versus Errors Per Query
plots for different methods for the 1551 queries
against the ASTRAL SCOP 1.73 all sequences
data set, evaluated at the family level.

of the statistical models used by HMMER and
PSI-BLAST give them significantly better per-
formance than the Smith-Waterman methods.

SSEARCH performs better than the other
Smith-Waterman methods, due to its use of
an E-value calculated by length regression
statistics (Pearson, 1995; Rognes, 2001; Hulsen
et al., 2006), rather than raw Smith-Waterman
scores.

Figure 1 and Figure 2 show the coverage ver-
sus error graphs for the 1551 query set evalu-
ated at the family and superfamily levels, re-
spectively. Here we can see that at the fam-
ily level, the Smith-Waterman methods and
HMMER perform similarly on this measure,
while BLAST is slightly worse. Interestingly,
at the family level, PSI-BLAST has a notice-
ably higher level of errors per query, while
FASTA is noticeably better. These distinctions
remain at the superfamily level, but to a lesser
degree.

Table 4 and Table 5 show the ROC50 val-
ues for the all-against-all queries in the AS-
TRAL SCOP 40% sequence nonredundant
subset evaluated at the family and superfam-
ily levels, respectively. Note that phmmer-max,
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Figure 2: Coverage versus Errors Per Query
plots for different methods for the 1551 queries
against the ASTRAL SCOP 1.73 all sequences
data set, evaluated at the superfamily level.

method roc50

ncbi-psiblast 0.670
ssearch 0.604
phmmer 0.601
swcuda 0.600
swsse2 0.593
ncbi-blast 0.559
fasta 0.556

Table 4: Average ROC50 values for dif-
ferent methods on all-against-all queries in
the ASTRAL SCOP 1.73 40% sequence non-
redundant data set, evaluated at the family
level.

method roc50

ncbi-psiblast 0.412
ssearch 0.337
phmmer 0.335
swcuda 0.333
swsse2 0.328
fasta 0.302
ncbi-blast 0.299

Table 5: Average ROC50 values for dif-
ferent methods on all-against-all queries in
the ASTRAL SCOP 1.73 40% sequence non-
redundant data set, evaluated at the superfam-
ily level.

the HMMER phmmer program with heuristic
filters disabled, was not evaluated in this test
as it was too slow to complete in practical time.
The results are consistent with the previous
set of queries, with only some minor variations
in the rankings within the classes we have de-
fined, such as swcuda and swsse2 exchanging
positions at the superfamily level, and BLAST
and FASTA swapping position in the last two
places. An exception is that SSEARCH has a
better ROC50 score than HMMER at in the
all-against-all queries at the superfamily level
(and has similar ROC50 score to the Smith-
Waterman methods, rather than a significantly
higher one as it does at the family level),
which is somewhat unexpected, as we expect
HMMER to be more sensitive to distant ho-
mology than Smith-Waterman methods (and
hence have a better score at the superfamily
than family level). We might generally expect
an increased sensitivity to come at the cost of
decreased specificity, however, in this case this
it not apparent from the coverage versus error
graph.

As we would expect, and consistent with
the results reported by Hulsen et al. (2006),
the increasing redundancy (i.e. the inclusion
of a large number of similar proteins) in the
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Figure 3: Coverage versus Errors Per Query
plots for different methods on all-against-all
queries in the ASTRAL SCOP 1.73 40% se-
quence non-redundant data set, evaluated at
the family level.

database leads to higher average ROC50 scores.
Hence the values in Tables 2 and 3, where
the search is in the entire ASTRAL SCOP
sequence database, are higher than those in
Tables 4 and 5, where the search is in the
40% sequence nonredundant ASTRAL SCOP
database.

Similarly, ROC50 scores are lower at the su-
perfamily than at the family level as sequence-
based methods are better at finding more
closely related proteins; at the extreme, if we
were to evaluate at the fold level, scores would
be even lower (data not shown), but structure-
based methods would perform better (note, of
course, that the SCOP classifications we are
using as gold standard are based on protein
structures).

Figure 3 and Figure 4 show the coverage ver-
sus error graph for the all-against-all queries
in the 40% sequence nonredundant ASTRAL
SCOP subset evaluated at the family and su-
perfamily levels, respectively. Here the results
are quite different from the 1551 query (one per
superfamily) set. Consistent with the results of
Hulsen et al. (2006), all the curves appear quite
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Figure 4: Coverage versus Errors Per Query
plots for different methods on all-against-all
queries in the ASTRAL SCOP 1.73 40% se-
quence non-redundant data set, evaluated at
the superfamily level.

similar, with the exception of PSI-BLAST (not
included by Hulsen et al. (2006)). At both the
family and superfamily levels, SSEARCH and
HMMER have fewer errors per query at the
higher coverage end of the curve (which may
be expected to be statistically more reliable
(Hulsen et al., 2006)). This is more pronounced
at the superfamily level, where HMMER shows
better results. However, particularly striking is
the curve for PSI-BLAST, which at the family
level is inferior up to coverage of approximately
0.25, but at higher values has a clearly lower
rate of growth of errors per query. At the su-
perfamily level this is much more pronounced,
and shows a quite different behaviour for PSI-
BLAST than the other methods, reinforcing
its superior sensitivity and specificity, also re-
flected in a significantly higher ROC50 value.

5.1.1 HMMER

Table 6 and Table 7 show the ROC50 scores for
different implementations of hmmsearch evalu-
ated at the family and superfamily levels, re-
spectively. Figure 5 and Figure 6 show the cor-
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method roc50

cuda hmmsearch 0.909
hmmsearch 0.909
hmmsearch3 0.885
hmmsearch3-max 0.885

Table 6: Average ROC50 values for different
hmmsearch implementations for the hmmsearch
HMM query set derived from the 1551 queries,
evaluated at the family level.

method roc50

cuda hmmsearch 0.936
hmmsearch 0.936
hmmsearch3 0.815
hmmsearch3-max 0.813

Table 7: Average ROC50 values for different
hmmsearch implementations for the hmmsearch
HMM query set derived from the 1551 queries,
evaluated at the superfamily level.

responding coverage versus error plots. This
shows that cuda hmmsearch does indeed give
exactly the same results as hmmsearch. We can
also observe that hmmsearch in HMMER 3.01a
gives somewhat less accurate results on these
measures than version 2.3.2, with the heuristic
filters making little or no difference to accu-
racy.

5.2 Speed

Figure 7 shows the elapsed times for the 11
query set in the UniProt database, and Ta-
ble 8 shows the speedup relative to swcuda

running on a single CPU core with no GPU
and no SSE2 instructions. Note that the times
are linear in the length of the query sequence,
except for PSI-BLAST, where the number of
iterations of the query is variable (up to 5).

It is apparent that, not unexpectedly,
BLAST has the best speedup for a single CPU
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Figure 7: Elapsed times for the 11 queries
in the UniProt database. Lines fitted by
locally-weighted polynomial regression using
the lowess function in R.

method speedup
phmmer 3.01a (no heuristics) 0.58
swcuda 1 CPU (no GPU, no SSE2) 1
swsse2 non-vectorized 2.1
NCBI PSI-BLAST 16
swcuda 1 CPU with SSE2 23
SSEARCH 26
FASTA 30
phmmer 3.01a (heuristics) 32
swcuda 1 GPU + 1 CPU with SSE2 37
swsse2 40
NCBI PSI-BLAST 4 CPUs 41
swcuda 4 CPUs with SSE2 74
NCBI BLAST 87
SSEARCH 4 CPUs 100
NCBI BLAST 4 CPU 210

Table 8: Average speedup relative to swcuda

on 1 CPU only with no SSE2 instructions for
the 11 queries on the UniProt database.
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Figure 8: Elapsed times for the short queries
in the UniProt database. Straight lines fitted
by the abline function in R.

core, and therefore the best overall speedup is
to run BLAST on multiple cores. The best
non-heuristic speedup is obtained by using the
striped vectorization with SSE2 instructions
(Farrar, 2007) on multiple cores: SSEARCH
(which includes the Farrar (2007) striped vec-
torization with SSE2 instructions) on 4 cores
is only slightly less than half as fast as BLAST
on 4 cores, without using heuristics.

Figure 8 shows the elapsed times for the
short query set in the UniProt database, and
Table 9 shows the speedup relative to swcuda

running on a single CPU core with no GPU
and no SSE2 instructions. This enables us to
test swcuda using the GPU only, and no CPU,
since it automatically load balances between
GPU(s) and CPU(s) available to it, and can
only use solely the GPU for queries less than
360 amino acids long.

These results confirm that the use of striped
vectorization and the SSE2 instructions gives
better speedup than the use of the GPU in
swcuda. The speedup using SSE2 instructions
in swcuda is 20 times, but 14 times for using
the GPU. The speedup for the SSE2 vectoriza-
tion used in SSEARCH and swsse2 is better
still.
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method speedup
phmmer 3.01a (no heuristics) 0.56
swcuda 1 CPU (no GPU, no SSE2) 1
swsse2 non-vectorized 2.3
swcuda 1 GPU (no CPU) 14
swcuda 1 CPU with SSE2 20
SSEARCH 22
FASTA 25
NCBI PSI-BLAST 26
swcuda 1 GPU + 1 CPU with SSE2 33
swsse2 34
swcuda 4 CPUs with SSE2 57
NCBI PSI-BLAST 4 CPUs 75
NCBI BLAST 78
SSEARCH 4 CPUs 82
NCBI BLAST 4 CPU 242

Table 9: Average speedup relative to swcuda

on 1 CPU only with no SSE2 instructions for
the short queries on the UniProt database.

5.2.1 HMMER

Figure 9 shows the elapsed times for the
hmmsearch queries derived from the 1551 query
set. Table 10 shows the speedup of dif-
ferent hmmsearch implementations relative to
hmmsearch from HMMER 2.3.2 on a single
CPU core.

We can see that GPU-HMMER
(cuda hmmsearch) achieves an average
speedup of 12 times, significantly better
than using the 4 cores available on our test
system. However, HMMER 3.01a with the
heuristic filters enabled, which makes use of
SSE2 instructions, is better still, achieving an
average speedup of 71 times.

Figure 10 plots the speedup factor against
the query HMM size. This allows us to see
that the speedup for using multiple cores is
(as we would expect) constant with no de-
pendence on query size, as is the speedup
for HMMER 3.01a with the heuristic filters
disabled. When the HMMER 3.01a heuris-
tic filters are enabled however, the speedup
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Figure 9: Elapsed times for the hmmsearch

HMM query set derived from the 1551 queries
in ASTRAL. Straight lines fitted by the
abline function in R.

method speedup
hmmsearch (1 CPU) 1
hmmsearch 3.01a (heurstics disabled) 2.1
hmmsearch (4 CPUs) 3.9
cuda hmmsearch 12
hmmsearch 3.01a 71

Table 10: Average speedup relative to
hmmsearch 2.3.2 on 1 CPU for the HMM query
set derived from the 1551 queries in ASTRAL.

depends on particular properties of the indi-
vidual queries, and so is not correlated with
query size. GPU-HMMER (cuda hmmsearch)
achieves better speedup with increasing query
size, with a peak of approximately 20 times
speedup for query size 900 or greater.

6 Discussion

Our results indicate that the speedup of Smith-
Waterman based sequence database search
programs achieved by using GPUs (specifically
the CUDA programming model) with the cur-
rent implementations available to us, is not as
great as that achieved by striped vectorization
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Figure 10: Speedup relative to hmmsearch ver-
sion 2.3.2 for the hmmsearch HMM query set
derived from the 1551 queries in ASTRAL.
Lines fitted by locally-weighted polynomial re-
gression using the lowess function in R, with
f = 0.01.

with the SSE2 instructions available on stan-
dard Intel CPUs. It may well be possible that
future implementations on GPUs will be faster,
as the vectorization using SSE2 instructions
is a more mature technique, which has even
been incorporated into standard tools such as
SSEARCH.

The limited memory available on the GPU,
which necessitates balancing queries between
the GPU(s) and CPU(s) available, and the
overhead of moving data between the host and
the GPU, means that GPU based accelera-
tion is more difficult and has higher overheads
than using SSE2 instructions which are already
available on standard CPUs.

Furthermore, we have found that the PSI-
BLAST program is more accurate on our eval-
uation than the Smith-Waterman implementa-
tions, and even the much more computation-
ally intensive HMMER. Although not as fast
as swcuda, SSEARCH or BLAST, its increased
accuracy may be worth the reduction in speed,
particularly if multiple processors are available
to parallelize database searching.

The GPU-HMMER implementation of
hmmsearch is a more promising use of the
GPU: the cuda hmmsearch program is on
average 12 times faster, and for sufficiently
long queries up to 20 times faster, than the
standard hmmsearch program, with identical
results. HMMER 3.01a, however, is on average
71 times faster, although with rather lower
accuracy. Again, the use of SSE2 instructions
(although in this case combined with heuris-
tics) achieves superior results to the use of the
GPU. However, as HMMER 3.01a is an alpha
version, the HMMER 3.01a results should be
treated with caution, as the release version
may well behave differently.

The use of multiple GPUs in the same ma-
chine can achieve better speedups, as reported
by Manavski and Valle (2008). It has also
been reported that the Cell Broadband Engine
can better accelerate the Smith-Waterman al-
gorithm (Wirawan et al., 2008). However, our
results would seem to indicate that efforts may
be better concentrated in accelerating PSI-
BLAST, since it can obtain superior accuracy
to the Smith-Waterman algorithm, and even
HMMER.

Another consideration is that sequence
database searching, although in very
widespread use on a large scale, is “suffi-
ciently fast” already, and perhaps efforts in
acceleration would be better concentrated on
more computationally complex problems such
as RNA structural alignment and database
search and protein structural database
search.10

7 Conclusion

The use of the GPU on its own can achieve up
to a 14 times speedup over a single CPU core
on the Smith-Waterman algorithm, and more

10The author discloses here that his PhD research is
in algorithms for analysis of RNA and protein structure.
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than 20 times in conjunction with the use of
a CPU core with SSE2 instructions. However,
this speedup is not as great as that achieved
by using striped vectorization with SSE2 in-
structions on CPU cores only. It is also not
nearly as fast as BLAST, although BLAST
has some cost in accuracy. PSI-BLAST is also
significantly more accurate on our evaluation
than the Smith-Waterman algorithm, although
slower. The GPU-HMMER implementation of
the HMMER hmmsearch program achieves an
average speedup of 12 times, and a peak of 20
times, although, again, the recently released al-
pha version of HMMER 3.01a achieves better
speedup by using SSE2 instruction in conjunc-
tion with heuristics (at some cost to accuracy).
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